29 research outputs found

    Endangered subspecies of the reed bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures

    Full text link
    In the Iberian Peninsula, populations of two subspecies of the Reed Bunting Emberiza schoeniclus have become increasingly fragmented during the last decades when suitable habitats have been lost and/or the populations have gone extinct. Presently, both subspecies are endangered. We estimated the amount of genetic variation and population structure in order to define conservation units and management practices for these populations. We found that the subspecies lusitanica has clearly reduced genetic variation in nuclear and mitochondrial markers, has a drastically small effective population size and no genetic differentiation between populations. In contrast, the subspecies witherbyi is significantly structured, but the populations still hold large amounts of variation even though the effective population sizes are smaller than in the non-endangered subspecies schoeniclus. We suggest several management units for the Iberian populations. One unit includes subspecies lusitanica as a whole; the other three units are based on genetically differentiated populations of witherbyi. The most important genetic conservation measure in the case of lusitanica is to preserve the remaining habitats in order to at least maintain the present levels of gene flow. In the case of the three management units within witherbyi, the most urgent conservation measure is to improve the habitat quality to increase the population sizes.This project would not have been possible without the help of many people, among them A. Rodriguez, D. Bigas, P. Vicens, J. Segura, M. Suarez, J. L. Martinez, V. Urios, M. Rebassa, C. Torralvo, J. L. Hernandez, M. Carregal, P. Alcazar, J. L. Canto, J. Ramirez,, D. Alonso, J. Arizaga, F. Arcos, H. Rguibi, Acciona-Trasnmediterranea, and many others who helped us with the difficult task of sampling Reed Buntings and who sent us their samples. We apologize if we have forgotten someone. "Arcea Xestion de Recursos Naturais S. L." was of inestimable value in obtaining most of the samples from Galicia in 2008, in getting funding from the "Xunta de Galicia", and in helping us with the discussion of the results. We would like to thank the authorities of Daimiel National Park, Marjal Pego-Oliva Natural Park, S'Albufera de Mallorca Natural Park, Delta de L'Ebre Natural Park, "Consejeria de Medio Ambiente y Desarrollo Rural de Castilla La Mancha", "Servicio de Conservacion de la Diversidad del Gobierno de Navarra", "Direccion Xeral de Conservacion da Natureza de la Xunta Galicia and "Servei de Conservacio de la Biodiversitat de la Generalitat Valenciana" for the facilities to work in protected areas and for the appropriate permits to obtain the samples. The people from these protected areas were always very nice and helped us with the fieldwork. This study was funded by projects CGL2005-02041/BOS of the "Ministerio de Educacion y Ciencia" of Spain, and SC000207, Orden 14-12-2005 of the "Consejeria de Medio Ambiente y Desarrollo Rural de la Junta de Castilla La Mancha", Spain, through the "Ayudas para la realizacion de actuaciones de apoyo a la conservacion de las areas y recursos naturales protegidos, Orden 14-12-2005". The "Direccion Xeral de Conservacion da Natureza de la Xunta de Galicia", Spain, funded part of the fieldwork in NW Iberian Peninsula during the development of the Recovery plan for Emberiza schoeniclus lusitanica in Galicia. The experiments comply the current laws of the countries (Spain, Portugal and Finland) where they were done.Kvist, L.; Ponnikas, S.; Belda Perez, EJ.; Encabo, I.; Martinez, E.; Onrubia, A.; Hernandez, JM.... (2011). Endangered subspecies of the reed bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology. 152(3):681-693. doi:10.1007/s10336-011-0646-9S6816931523Atienza JC, Copete JL (2004) Escribano palustre iberoriental/escribano palustre iberoccidental. In: Madroño A (ed) Libro rojo de las aves de España Ministerio de Medio Ambiente, Madrid, pp 378–379Belda EJ, Encabo JL, Hernández JM et al (2008) Requerimientos y uso del hábitat del escribano palustre iberoriental Emberiza schoeniclus witherbyi. In: Barba E, Monrós JS, Belda EJ, Andreu J (eds) XII Congreso Nacional y IX Iberoamericano de Etología Ponencias y comunicaciones. Publicaciones de la Universidad de Valencia, Valencia, p 67Bensch S, Price T, Kohn J (1997) Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Mol Ecol 6:91–92Byers C, Olsson U, Curson J (1994) Buntings and Sparrows—a guide to the Buntings and North American Sparrows. Pica Press, SussexCaughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Cramp S, Perrins CM (1994) The birds of the western palearctic, vol 9. Oxford University Press, OxfordCrandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318Graputto A, Pilastro A, Marin G (1998) Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Mol Ecol 7:1173–1182Griffith SC, Stewart IRK, Dawson DA et al (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an’island effect’. Biol J Linn Soc 68:303–316Hanotte O, Zanon C, Pugh A et al (1994) Isolation and characterization of microsatellite loci in a passerine birds: the reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530Hey J, Waples RS, Arnold ML et al (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603Keane TM, Naughton TJ, McInerney JO (2007) MultiPhyl: A high throughput phylogenomics webserver using distributed computing. Nucl Acids Res 35:W33–W37Kuhner MK (2006) Lamarc 20: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770Kvist L, Martens J, Higuchi H et al (2003) Evolution and genetic structure of the great tit (Parus major) complex. Proc R Soc Lond B 270:1447–1454Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460Matessi G (1999) Evolutionary patterns in European populations of reed bunting (Emberiza schoeniclus ssp). Dissertation, University of BolognaMayer C, Schiegg K, Pasinelli G (2008) Isolation, characterization and multiplex genotyping of 11 autosomal and four sex-linked microsatellite loci in the reed bunting, Emberiza schoeniclus (Emberizidae, Aves). Mol Ecol Notes 8:332–334Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375Ovenden J, Peel D, Street R, Courtney A, Hoyle S et al (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Mol Ecol 16:127–138Patkeau D (1999) Using genetics to identify intraspecific conservation units: a critique of current methods. Conserv Biol 13:1507–1509Primmer CR, Møller AP, Ellegren H (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 4:493–498Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Raymond M, Rousset F (1995) GENEPOP (version 12): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkSpielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264von Oosterhout C, Hutchinson WF, Wills PM et al (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Waples RS (1991) Pacific salmon, Onchorynchus spp, and the definition of species under the endangered species act. Mar Fish Rev 53:11–22Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–212

    Suomen susikannan suotuisan suojelutason viitearvojen määrittäminen: Loppuraportti 2022

    Get PDF
    Maa- ja metsätalousministeriö antoi loppuvuodesta 2020 Luonnonvarakeskukselle (Luke) tehtäväksi tuottaa Suomen susikannan suotuisan suojelutason viitearvon kansainvälisenä tutkimusyhteistyönä. Viitearvo kuvaa populaatiokokoa, joka mahdollistaisi susikannan suotuisan suojelutason saavuttamisen ja ylläpitämisen Suomessa, mikäli myös muut suotuisan suojelutason kriteerit täyttyisivät. Viitearvon määrittely koskee poronhoitoalueen ulkopuolista Suomea, mutta on syytä muistaa, että poronhoitoalueella on merkitystä susikantojen välisten yhteyksien kannalta (Ruotsi, Norja). Tässä raportissa kuvataan kaksivuotisessa projektissa tehty työ päätuloksineen. Suotuisan suojelutason viitearvojen määrittämiseen ei ole annettu yksityiskohtaista ohjeistusta. Viitearvon määrittäminen perustuu tieteelliseen tietoon ja asiantuntemukseen, mutta tietyt kohdat viitearvon asettamisessa edellyttävät päätöksentekijän valintoja. Numeeriset kriteerit, jotka viitearvon tulee täyttää, edellyttävät viitearvon olevan suurempi kuin pienin elinvoimainen populaatio (PEP) ja suurempi kuin kannan koko luontodirektiivin astuessa voimaan. Tässä työssä viitearvon johtamiseen esitellään erilaisia tapoja, joista jokaisella on omat vahvuutensa ja heikkoutensa. Luontodirektiivin tavoite on varmistaa lajien suotuisa suojelutaso EU:n alueella. Se, voiko Suomi tukeutua muiden maiden ja ennen kaikkea Venäjän susipopulaatioihin oman susikantansa elinvoimaisuuden ylläpitämisen suhteen, määräytyy luontodirektiivin tulkinnan pohjalta. Viitearvoa määritettäessä keskeinen lähtökohta on susikannan elinvoimaisuuden arvioiminen kannan geneettisiin ja demografisiin ominaisuuksiin perustuen. Lisäksi saaliseläinkantojen ja sopivan elinympäristön riittävyys asettaa ylärajan kannan enimmäiskoolle, jolloin puhutaan susikannan ekologisesta kantokyvystä. Jos Suomi ei voi suotuisan suojelutason saavuttamisessa huomioida Suomen susikantaa osana laajempaa populaatiota, tulee Suomen susikannan itsessään olla tarpeeksi suuri takaamaan kannan geneettinen elinvoimaisuus pitkällä aikavälillä eli kannalla tulisi olla evolutiivista kykyä sopeutua muuttuviin ympäristöolosuhteisiin. Jos Suomi voi huomioida viitearvon määrittämisessä olemassa olevan yhteyden muiden maiden alueella eläviin susipopulaatioihin, tulee viitearvon määrittämisessä käyttää lähtökohtana demografista elinvoimaisuutta ja lyhyen aikavälin geneettistä elinvoimaisuutta. Tällöin kannan koon tulisi olla tarpeeksi suuri, jotta sukusiitoksen haitallisilta vaikutuksilta vältytään edes lyhyellä aikavälillä. Geneettiset tulokset osoittavat, että Venäjän Karjalan ja itäisen Suomen susipopulaatiot ovat perimältään samankaltaisia, ja yksilöitä levittäytyy rajan yli molempiin suuntaan. Tällä hetkellä tulomuuttoa ei kuitenkaan ole riittävästi pitämään yllä Suomen susipopulaation geneettistä monimuotoisuutta. Tulokset osoittavat, että vähäistä tulomuuttoa tulee myös Skandinaviasta Suomeen. On todennäköistä, että Luoteis-Venäjän ja Suomen susipopulaatioiden välinen yhteys säilyy ainakin lähitulevaisuudessa. Siten viitearvon määrittelyssä on mahdollista keskittyä tarkastelemaan kannan geneettistä elinvoimaisuutta lyhyellä aikavälillä. Pitkän aikavälin geneettinen elinvoimaisuus edellyttää efektiivistä populaatiokokoa 1000. Koska populaation todellinen yksilömäärä on yleensä merkittävästi efektiivistä populaatiokokoa suurempi, edellyttäisi tämä useiden tuhansien yksilöiden populaatiota. Jos Suomella ei olisi mahdollisuutta huomioida muiden valtioiden alueella eläviä susia, tulisi tämä populaatiokoko saavuttaa Suomen rajojen sisäpuolella. Tavoite on kuitenkin epärealistinen, sillä hankkeessa mallinnuksen avulla arvioitu elinympäristön kantokyky ei mahdollista näin suurta susikantaa Suomessa. Tulosten mukaan Suomen susikanta on nykyhetkellä jakautunut kahteen osapopulaatioon, minkä takia Itä-Suomea ja Länsi-Suomea tulee käsitellä geneettisen pienimmän elinvoimaisen populaation (GPEP) määrittämisessä kahtena osapopulaationa. Demografista elinvoimaisuutta (DPEP) ja ekologista kantokykyä on kuitenkin tarkasteltu käsittelemällä koko poronhoitoalueen ulkopuolisen Suomen susikantaa yhtenä kokonaisuutena. Geneettiset tulokset valmistuivat vasta työn loppuvaiheessa, mistä johtuen uutta tietoa kahdesta osapopulaatiosta ei ole ollut mahdollista tuoda demografiseen arviointiin. Mallinnustulokset osoittivat, että tunnistetut kaksi osapopulaatiota eivät ole geneettisesti elinvoimaisia nykyisen kokoisina ja nykykytkeytyneisyydellään (tulomuuton määrä) Fennoskandian metapopulaatioon. Osakantojen eriytyminen johtuu siitä, ettei niiden välillä tapahdu riittävästi muuttoliikettä, vaan erityisesti länsisuomalaiset sudet pariutuvat pääosin keskenään. Myöskään Venäjän Karjalasta Suomeen vaeltavat sudet eivät näyttäisi asettuvan osaksi lounaisen Suomen susikantaa. Siksi sekä populaatiokokojen että tulomuuton pitäisi kasvaa, jotta Suomen osapopulaatioiden lyhyen aikavälin (Ne=100) sekä myös Fennoskandian metapopulaation pitkän aikavälin (Ne=1000) elinkelpoisuus saavutettaisiin. Mallien tulokset korostavat geenivirran merkitystä geneettiselle elinvoimaisuudelle, sillä skenaariot, joissa oletettiin, ettei tulomuuttoa ole (m=0), ja joissa Suomen osapopulaatioita mallinnettiin erillään naapurimaiden populaatioista, pienensivät efektiivisiä populaatiokokoja ja kasvattivat sukusiitoksen astetta huomattavasti. Viitearvoa määriteltäessä on perusteltua tarkastella Itä-Suomea ja Länsi-Suomea erikseen, jolloin molemmilla alueilla susipopulaatioiden tulisi ylittää alueen oma geneettinen PEP. Geneettinen PEP riippuu laskennassa käytettävän ajanjakson pituudesta ja siedetystä populaation kokonaiskelpoisuuden laskusta tälle ajanjaksolle. Usein käytettyjä arvoja ovat esimerkiksi viisi sukupolvea ja 10 % kelpoisuuden lasku. Tuloksia tarkasteltaessa on hyvä huomata, että periaatteessa kummankin alueen GPEP tulisi saavuttaa huolimatta siitä, mikä tilanne on toisella alueella, eli itäisen Suomen susipopulaatiota kasvattamalla ei voida laskea läntisen Suomen hyväksyttyä efektiivistä populaatiokokoa. Suomen susikannan tulee olla myös demografisesti elinvoimainen. Demografinen PEP riippuu laskennasta käytettävän ajanjakson pituudesta ja populaatiolle hyväksytystä häviämisriskistä tälle ajanjaksolle. Usein käytettyjä arvoja ovat esimerkiksi 100 vuotta ja 10 %:n häviämisriski, jotka perustuvat IUCN:n määritelmään lajin uhanalaisuudesta. Tässä työssä kehitetty demografinen populaatiomalli ei ota huomioon geneettisiä tekijöitä. Tämän takia sen pohjalta ei voida tutkia, kuinka suuri populaatio olisi elinvoimainen, jos myös geneettiset seikat huomioitaisiin. Populaatio voi siis vaikuttaa demografisilta ominaisuuksiltaan elinvoimaiselta, mutta samalla se voi olla liian pieni välttääkseen sukusiitosheikkoudesta johtuvia ongelmia, jotka voivat heikentää myös populaation demografisia ominaisuuksia. Näin ollen viitearvon asettamisessa tulee verrata osapopulaatioiden yhteenlaskettuja GPEP-tasoja demografiaan perustuvaan PEP-tasoon. Raportissa esitetään useita vaihtoehtoisia tapoja sekä pienimmän elinvoimaisen populaation että siitä johdettavien viitearvojen määrittämiseen. Koska vaihtoehtoja on paljon, raportissa esitetään myös useita esimerkkituloksia viitearvoista. Se, mitä esitetyistä vaihtoehdoista käytetään, edellyttää päätöksentekijältä valintoja määrittelyprosessin eri kohdissa. Raportissa esitetyt tulokset perustuvat Suomen susikannan nykyiseen tilanteeseen. Jos susikannan tila muuttuu, voi myös käsitys kannan elinvoimaisuudesta ja siihen perustuvista viitearvoista muuttua. Populaation geneettisiä ja demografisia ominaisuuksia tulisikin seurata säännöllisesti, ja viitearvoja ja niiden laskennan logiikkaa päivittää tarvittaessa. Päivityksen tarvetta voi ilmetä myös, jos viitearvomäärittelyyn liittyvää ohjeistusta päivitetään komission toimesta. Tavoite suotuisasta suojelutasosta koskee vain EU-maita. Kun kyseessä on laji, jonka populaatiot ovat kiinteästi yhteydessä toisiinsa yli valtiorajojen, olisi tärkeä kehittää ohjeistusta ja metodiikkaa niin, että viitearvomäärittelyssä voitaisiin paremmin huomioida biologiset ja ekologiset populaatiorajat

    Establishing conservation management for avian threatened species

    No full text
    Abstract The protection of endangered species requires knowledge about the habitat requirements and the genetic issues related to the population viability. In this doctoral thesis, I defined the breeding habitat features of the Finnish populations of the Golden Eagle (Aquila chrysaetos) and the Peregrine Falcon (Falco peregrinus) by applying habitat suitability modelling. Secondly, I studied the conservation genetic issues of the Finnish population of the White-tailed Eagle (Haliaeetus albicilla) and the two Reed Bunting subspecies Emberiza schoeniclus witherbyi and E.s. lusitanica met in the Iberian Peninsula. All study populations are classified as threatened according to IUCN classification and they have experienced declines in population sizes in recent history. My results from habitat suitability models showed that human-induced changes in habitat threaten the Golden Eagle in Finland. The relative suitability for the species presence dropped to zero when the proportion of human altered landscape (agricultural or urbanized areas) in the core of the breeding habitat (4 km2) was more than 5%. Models further showed that habitat structure influences breeding habitat selection of the Peregrine Falcon, as it favours well-connected areas of open peatlands. Therefore, fragmentation (i.e., decreasing the connectivity) of open peatlands decreases the habitat quality for the species. The White-tailed Eagle has recovered mainly through local growth, but my results suggest that gene flow from neighbouring populations has had an impact as well, and has enhanced the genetic viability of the Finnish population. The current structure of the two subpopulations (one along the Baltic Sea coast line and another inland in Northern Finland) results mainly from the species’ ecology (i.e., philopatric behaviour), not from the recent population bottlenecks. The effective population size estimate of the coastal subpopulation of White-tailed Eagle was below the critical size needed to maintain evolutionary potential. The estimates of the effective population sizes for E.s. lusitanica and E.s. witherbyi and inland subpopulation of White-tailed Eagle were close or below the critical level of 50, which makes them prone to losing fitness due to inbreeding depression in the short term. Therefore, these study populations need to increase in size in order to secure population viability in the future.Tiivistelmä Ihmisen aiheuttamat elinympäristöjen muutokset uhkaavat biodiversiteettiä kasvattamalla yhä useampien eliölajien sukupuuttoriskiä. Tehokkaat suojelutoimenpiteet edellyttävät tietoa uhanalaisten lajien elinympäristövaatimuksista sekä populaation elinkyvylle keskeisistä geneettisistä tekijöistä. Tarkastelen väitöskirjatyössäni maakotkan (Aquila chrysaetos) sekä muuttohaukan (Falco peregrinus) Suomen populaatioiden pesimäympäristön piirteitä maisemaekologisen mallinnuksen avulla. Toiseksi tarkastelen Suomen merikotkapopulaation (Haliaeetus albicilla) sekä Iberian niemimaalla esiintyvien pajusirkun alalajien Emberiza schoeniclus witherbyin ja E.s. lusitanican suojelun kannalta tärkeitä geneettisiä tekijöitä. Kaikki tutkimuspopulaatiot ovat uhanalaisia ja ne ovat kärsineet voimakkaista kannan pienenemisistä. Maisemaekologiset mallit osoittivat maakotkan välttävän ihmisen muokkaamaa ympäristöä (maatalousalueet ja rakennetut alueet). Lajin esiintymistodennäköisyys laski nopeasti nollaan, kun ihmisen muokkaaman ympäristön osuus nousi yli 5 prosenttiin pesimäympäristön ydinalueella (4 km2). Mallit osoittivat maiseman rakenteen vaikuttavan muuttohaukan habitaatinvalintaan, sillä se suosi pesimäympäristönään kytkeytyneitä avosoita. Avosoiden pirstoutuminen (l. kytkeytyneisyyden väheneminen) vähentää näin ollen muuttohaukan pesimäympäristön laatua. Merikotkapopulaatio on toipunut pääosin paikallisen kasvun myötä, mutta tulokseni viittaavat myös siihen, että geenivirta naapurimaiden populaatioista on lisännyt Suomen populaation geneettistä muuntelua. Nykyinen rakenne (rannikon ja Lapin alapopulaatiot) on seurausta lajin synnyinpaikkauskollisuudesta, ei niinkään populaatiokoon romahduksista. Rannikon merikotkapopulaation efektiivinen koko jäi alle kriittisen rajan, joka tarvitaan evolutiivisen potentiaalin säilymiselle. Pajusirkun alalajien sekä Lapin merikotkapopulaation efektiiviset populaatiokoot olivat lähellä kriittisenä pidettyä 50:tä tai jäivät alle, joten ne ovat vaarassa menettää kelpoisuutta sukusiitosdepression seurauksena lyhyellä aikavälillä. Sekä pajusirkun alalajien että merikotkapopulaatioiden tulee sen vuoksi kasvaa säilyäkseen elinvoimaisina tulevaisuudessa

    Whole-genome analysis across 10 songbird families within Sylvioidea reveals a novel autosome-sex chromosome fusion

    No full text
    Sex chromosomes in birds have long been considered to be extremely stable. However, this notion has lately been challenged by findings of independent autosome-sex chromosome fusions within songbirds, several of which occur within a single clade, the superfamily Sylvioidea. To understand what ecological and evolutionary processes drive changes in sex chromosome systems, we need complete descriptions of sex chromosome diversity across taxonomic groups. Here, we characterize the sex chromosome systems across Sylvioidea using whole-genome data of species representatives of 10 different families, including two published and eight new genomes. We describe a novel fusion in the family Cisticolidae (represented by Cisticola juncidis) involving a part of chromosome 4. We also confirm the previously identified fusion between chromosome Z and a part of chromosome 4A in all 10 families and show that fusions involving parts of chromosomes 3 and 5 are not found outside the families where they were first discovered (Alaudidae and Panuridae). These findings add to the complexity of the sex chromosome system in Sylvioidea, where four independent autosome-sex chromosome fusions have now been identified

    Extreme variation in recombination rate and genetic diversity along the Sylvioidea neo-sex chromosome

    No full text
    Recombination strongly impacts sequence evolution by affecting the extent of linkage and the efficiency of selection. Here, we study recombination over the Z chromosome in great reed warblers (Acrocephalus arundinaceus) using pedigree-based linkage mapping. This species has extended Z and W chromosomes (“neo-sex chromosomes”) formed by a fusion between a part of chromosome 4A and the ancestral sex chromosomes, which provides a unique opportunity to assess recombination and sequence evolution in sex-linked regions of different ages. We assembled an 87.54 Mbp and 90.19 cM large Z with a small pseudoautosomal region (0.89 Mbp) at one end and the fused Chr4A-part at the other end of the chromosome. A prominent feature in our data was an extreme variation in male recombination rate along Z with high values at both chromosome ends, but an apparent lack of recombination over a substantial central section, covering 78% of the chromosome. The nonrecombining region showed a drastic loss of genetic diversity and accumulation of repeats compared to the recombining parts. Thus, our data emphasize a key role of recombination in affecting local levels of polymorphism. Nonetheless, the evolutionary rate of genes (dN/dS) did not differ between high and low recombining regions, suggesting that the efficiency of selection on protein-coding sequences can be maintained also at very low levels of recombination. Finally, the Chr4A-derived part showed a similar recombination rate as the part of the ancestral Z that did recombine, but its sequence characteristics reflected both its previous autosomal, and current Z-linked, recombination patterns

    Turnover and Natal Dispersal in the Finnish Golden Eagle (<i>Aquila chrysaetos</i>) Population

    No full text
    Estimating turnover in a population provides information on population dynamics, such as dispersal and mortality. Dispersal increases genetic diversity and affects the genetic structure. Golden eagles are monogamous, tend to mate for life, and have strong nest site fidelity, which suggests low turnover rates. Here, we first studied genetic diversity and population structure in the Finnish golden eagle population using 11 microsatellite loci and a fragment of a mitochondrial DNA control region. We found no notable changes in genetic diversity during the 15-year study period and did not discover any population structure. Then, we examined the turnover rate using chick genotypes (N = 935) by estimating relatedness between chicks born in the same territory in different years. The results showed a turnover rate of 23%, which correlated with the breeding success of the previous year. Similarly, in the absence of turnover, the pair changed nest sites within a territory after an unsuccessful breeding. In addition, our dataset also revealed natal dispersal of ten individuals. Natal dispersal distance was 110 km on average (median 98 km); however, the distance seemed to vary depending on geographical location, being greater in Northern Finland than in Southern Finland

    Why Do Sex Chromosomes Stop Recombining?

    No full text
    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution

    Turnover and post‐bottleneck genetic structure in a recovering population of Peregrine Falcons Falco peregrinus

    No full text
    Abstract Dispersal is a process that increases genetic diversity and genetic connectivity of populations. We studied the turnover rate of breeding adults and genetic population structure to estimate dispersal in Peregrine Falcons in Finland. We used relatedness estimates among Finnish Peregrine Falcons over a 5‐year period, genotyping over 500 nestlings with 10 microsatellite loci to reveal the rate of turnover. Our results reveal a high turnover rate (21.7%) that does not seem to be correlated with the breeding success of the previous year. The extent of population genetic structure and diversity, and possible signs of the population crash during the 1970s, was assessed with a reduced dataset, excluding relatives. We found genetic diversity to be similar to previously studied falcon populations (expected heterozygosity of 0.581) and no population genetic structuring among our sampled populations. We did not find a genetic imprint of the past population bottleneck that the Finnish Peregrine population experienced. We conclude that high dispersal rates are likely to have contributed to maintaining genetic diversity across the landscape, by mixing individuals within the species’ distribution in Finland and thus preventing genetic structuring and negative effects associated with the population decline in the 1970s

    Consequences of partially recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes

    No full text
    The evolution of suppressed recombination between sex chromosomes is widely hypothesized to be driven by sexually antagonistic selection (SA), where tighter linkage between the sex-determining gene(s) and nearby SA loci is favored when it couples male-beneficial alleles to the proto-Y chromosome, and female-beneficial alleles to the proto-X. Despite limited empirical evidence, the SA selection hypothesis overshadows several alternatives, including an incomplete but often-repeated “sheltering hypothesis” that suggests that expansion of the sex-linked region (SLR) reduces homozygous expression of partially recessive deleterious mutations at selected loci. Here, we use population genetic models to evaluate the consequences of deleterious mutational variation for the evolution of neutral chromosomal inversions expanding the SLR on proto-Y chromosomes. We find that SLR-expanding inversions face a race against time: lightly loaded inversions are initially beneficial, but eventually become deleterious as they accumulate new mutations, and must fix before this window of opportunity closes. The outcome of this race is strongly influenced by inversion size, the mutation rate, and the dominance coefficient of deleterious mutations. Yet, small inversions have elevated fixation probabilities relative to neutral expectations for biologically plausible parameter values. Our results demonstrate that deleterious genetic variation can plausibly drive recombination suppression in small steps and would be most consistent with empirical patterns of small evolutionary strata or gradual recombination arrest

    Genetic structure of an endangered raptor at individual and population levels

    No full text
    The Finnish population of White-tailed Eagle (Haliaeetus albicilla) has gone through two major demographic bottlenecks during the last two centuries. Strong conservation measures have allowed the population to recover, but despite the rapid population growth during recent years the species is still classified as endangered. We studied the genetic population structure at both individual and population levels in an attempt to recognize the processes shaping it. We used 9 microsatellite loci and 473 base pair fragment of the mitochondrial DNA control region on samples collected between the years 2003 and 2007 (N = 489). We found a clear isolation by distance pattern at fine scale (i.e. individual level) which is most likely a result of species' philopatric behaviour. Although we did not find signs of the recent bottlenecks, we did find evidence of an ancient bottleneck that has occurred most likely over 21,000 years ago, long before the genetic divergence of the two present Finnish subpopulations (one along the Baltic Sea coast line and another in Lapland and easternmost Finland). We conclude that the present population structure is mainly a consequence of the species philopatric behaviour over a long time period instead of recent population bottlenecks. Based on our results, the Finnish population seems to have ongoing immigration from neighbouring populations. Hence, even though the population has recovered mainly through local growth, our results suggest that gene flow from genetically differentiated populations have had an impact as well
    corecore