5 research outputs found
Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats
In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Developmentâs (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
A Review of Geochemical Modeling for the Performance Assessment of Radioactive Waste Disposal in a Subsurface System
Radionuclides are inorganic substances, and the solubility of inorganic substances is a major factor affecting the disposal of radioactive waste and the release of concentrations of radionuclides. The degree of solubility determines whether a nuclide source migrates to the far field of a radioactive waste disposal site. Therefore, the most effective method for retarding radionuclide migration is to reduce the radionuclide solubility in the aqueous geochemical environment of subsurface systems. In order to assess the performance of disposal facilities, thermodynamic data regarding nuclides in waterârock systems and minerals in geochemical environments are required; the results obtained from the analysis of these data can provide a strong scientific basis for maintaining safety performance to support nuclear waste management. The pH, Eh and time ranges in the environments of disposal sites cannot be controlled, in contrast to those under experimental conditions in laboratories. Using a hypothetical error mechanism for the safety assessment of disposal sites may engender incorrect assessment results. Studies have focused on radionuclide reactions in waste disposal, and have offered evidence suggesting that these reactions are mainly affected by the geochemical environment. However, studies have not examined the thermodynamics of chemical reactions or interactions between water and minerals, such as the surface complexation and adsorption of various nuclide-ion species. Simple coefficient models have usually been applied in order to obtain empirical formulas for deriving Kd to describe nuclide distributions in the solid or liquid phase in waterârock geochemical systems. Accordingly, this study reviewed previous research on the applications of geochemical models, including studies on the development of geochemical models, sources of thermodynamic databases (TDBs) and their applications in programs, the determination of the adequacy of TDBs in surface complexation models and case studies, and the selection and application of activity coefficient equations in geochemical models. In addition, the study conducted case studies and comparisons of the activity coefficients derived by different geochemical models. Three activity coefficient equations, namely the Davies, modified DebyeâHĂŒckel, and Pitzer equations, and four geochemical models, namely PHREEQC, MINEQL+, MINTEQA2, and EQ3/6, were used in the study. The results demonstrated that when the solutionâs ionic strength was <0.5 m, the differences in the activity coefficients between the Davies and modified DebyeâHĂŒckel equations were <5%. The difference between the Pitzer and Davies equations, or between the Pitzer and modified DebyeâHĂŒckel equations in terms of the calculated activity coefficients was <8%. The effect of temperature on the activity coefficient slightly influenced the modeling outputs of the Davies and modified DebyeâHĂŒckel equations. In the future, the probability distribution and uncertainty of parameters of Kd and the equilibrium constant can be used in geochemical and reactive transport models to simulate the long-term safety of nuclear waste disposal sites. The findings of this study can provide a strong scientific basis for conducting safety assessments of nuclear waste disposal repositories and developing environmental management or remediation schemes to control sites marred by near-surface contamination
The Effect of Porosity Change in Bentonite Caused by Decay Heat on Radionuclide Transport through Buffer Material
Bentonite is used as a buffer material in most high-level radioactive waste (HLW) repository designs. Smectite clay is the main mineral component of bentonite and plays a key role in controlling the bufferâs physical and chemical behaviors. Moreover, the long-term functions of buffer clay could be lost through smectite dehydration under the prevailing temperature stemming from the heat of waste decay. Therefore, the influence of waste decay temperatures on bentonite performance needs to be studied. However, seldom addressed is the influence of the thermo-hydro-chemical (T-H-C) processes on buffer material degradation in the engineered barrier system (EBS) of HLW disposal repositories as related to smectite clay dehydration. Therefore, we adopted the chemical kinetic model of smectite dehydration to calculate the amount of water expelled from smectite clay minerals caused by the higher temperatures of waste decay heat. We determined that the temperature peak of about 91.3 °C occurred at the junction of the canister and buffer material in the sixth year. After approximately 20,000 years, the thermal caused by the release of the canister had dispersed and the temperature had reduced close to the geothermal background level. The modified porosity of bentonite due to the temperature evolution in the buffer zone between 0 and 0.01 m near the canister was 0.321 (1â2 years), 0.435 (3â10 years), and 0.321 (11â20,000 years). In the buffer zone of 0.01â0.35 m, the porosity was 0.321 (1â20,000 years). In the simulation results of near-field radionuclide transport, we determined that the concentration of radionuclides released from the buffer material for the porosity of 0.321 was higher than that for the unmodified porosity of 0.435. It occurs after 1, 1671, 63, and 172 years for the I-129, Ni-59, Sr-90, and Cs137 radionuclides, respectively. The porosity correction model proposed herein can afford a more conservative concentration and approach to the real release concentration of radionuclides, which can be used for the safety assessment of the repository. Smectite clay could cause volume shrinkage because of the interlayer water loss in smectite and cause bentonite buffer compression. Investigation of the expansion pressure of smectite and the confining stress of the surrounding host rock can further elucidate the compression and volume expansion of bentonite. Within 10,000 years, the proportion of smectite transformed to illite is less than 0.05%. The decay heat temperature in the buffer material should be lower than 100 °C, which is a very important EBS design condition for radioactive waste disposal. The results of this study may be used in advanced research on the evolution of bentonite degradation for both performance assessments and safety analyses of final HLW disposal
The DESI experiment part I: science, targeting, and survey design
DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to . To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to . Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts (), for the Ly- forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median . In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions
The DESI Experiment Part II: Instrument Design
DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution between 2000 and 5500, depending on wavelength. The DESI instrument will be used to conduct a five-year survey designed to cover 14,000 deg. This powerful instrument will be installed at prime focus on the 4-m Mayall telescope in Kitt Peak, Arizona, along with a new optical corrector, which will provide a three-degree diameter field of view. The DESI collaboration will also deliver a spectroscopic pipeline and data management system to reduce and archive all data for eventual public use