24 research outputs found

    Persistence of Multiple Paramyxoviruses in a Closed Captive Colony of Fruit Bats (Eidolon helvum).

    Get PDF
    Bats have been identified as the natural hosts of several emerging zoonotic viruses, including paramyxoviruses, such as Hendra and Nipah viruses, that can cause fatal disease in humans. Recently, African fruit bats with populations that roost in or near urban areas have been shown to harbour a great diversity of paramyxoviruses, posing potential spillover risks to public health. Understanding the circulation of these viruses in their reservoir populations is essential to predict and prevent future emerging diseases. Here, we identify a high incidence of multiple paramyxoviruses in urine samples collected from a closed captive colony of circa 115 straw-coloured fruit bats (Eidolon helvum). The sequences detected have high nucleotide identities with those derived from free ranging African fruit bats and form phylogenetic clusters with the Henipavirus genus, Pararubulavirus genus and other unclassified paramyxoviruses. As this colony had been closed for 5 years prior to this study, these results indicate that within-host paramyxoviral persistence underlies the role of bats as reservoirs of these viruses.This research was funded by Research England, the Royal Veterinary College, the Medical Research Council (grant number MR/P025226/1) and the Defense Advanced Research Projects Agency (DARPA) administered through Cooperative Agreement #D18AC00031-PREEMPT. JLNW and OR are funded by The Alborada Trust. AAC was part-funded by a Royal Society Wolfson Research Merit award

    Demodicosis in a captive African straw-coloured fruit bat (Eidolon helvum).

    Get PDF
    Demodicosis is most frequently observed in the domestic dog (Canis familiaris), but it has rarely been reported in bats (Chiroptera). The overpopulation of Demodex spp. that causes dermatological changes is generally associated with a compromised immune system. We describe the gross and histological features of generalized demodicosis in an adult female African straw-coloured fruit bat (Eidolon helvum) drawn from a captive research colony. The histology of the lesions revealed comedones and follicular infundubular cysts harbouring numerous Demodex spp. mites, eliciting a minimal inflammatory response in the adjacent dermis. The histological examination of a full set of tissues did not reveal clear evidence of immunosuppression, although a clinical history of recent abortion and possible stressors due to captivity could be considered risk factors for the demodicosis. Attempts to determine the Demodex species using PCR on DNA extracted from the formalin fixed paraffin embedded tissue failed. This is the first clinical and histological description of demodicosis in Eidolon helvum

    Longitudinal Secretion of Paramyxovirus RNA in the Urine of Straw-Coloured Fruit Bats (Eidolon helvum).

    Get PDF
    The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection

    Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species

    Get PDF
    Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable m

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Rushing for “burned” food: Why and how does a group of patas monkeys (Erythrocebus patas) reach freshly burned areas?

    No full text
    パタスモンキーの人為的環境への適応性 燃えたての野焼き地へ群れで駆けつける. 京都大学プレスリリース. 2024-03-08.Recently, considerable attention has been paid to animal adaptations to anthropogenic environments, such as foraging in burned areas where plants are promoted to regenerate by anthropogenic burning. However, among primates, reports on the utilization of resources that are available immediately after burning have been limited to a few primate species. In this study, we investigated and compared the activity budgets and food categories of a group of patas monkeys (Erythrocebus patas) in freshly burned areas by comparing them with those in previously burned areas and unburned areas. We also assessed the proportion of time spent in the freshly burned area before and after the fire: GPS collars were fitted to five of the six adults in the group, and their patterns when they traveled toward freshly burned and unburned feeding areas were compared. Patas monkeys spent more time in freshly burned areas after the fire, and they visited such areas mostly for feeding, particularly on roasted seeds of Cissus populnea. Furthermore, patas monkeys traveled faster and in a more synchronized way toward freshly burned areas. This “apparent goal-directed” travel began at least 1 h before arriving. Results indicate that the group recognized freshly burned areas as valuable, and the monkeys were able to travel in a goal-directed manner to them despite their variable locations. We suggest that smoke from freshly burned areas provides a visual cue with which to orient to the burned areas. Our results also support the notion that some primates are flexible enough to adapt to and benefit from anthropogenic environmental changes

    Viral Zoonoses of National Importance in Ghana: Advancements and Opportunities for Enhancing Capacities for Early Detection and Response

    No full text
    Zoonotic diseases have devastating impacts on human and animal health, livelihoods, and economies. Addressing the complex web of interrelated factors leading to zoonotic disease emergence and spread requires a transdisciplinary, cross-sectoral approach, One Health. The One Health approach, which considers the linkages between the health of people, animals, and their shared environment, presents opportunities to reduce these impacts through a more holistic coordinated strategy to understanding and mitigating disease risks. Understanding the linkages between animal, human, and environmental health risks and outcomes is critical for developing early detection systems and risk reduction strategies to address known and novel zoonotic disease threats. Nearly 70 countries across the world, including Ghana, have signed on to the Global Health Security Agenda (GHSA), which is facilitating multisectoral approaches to strengthen country capacities in the prevention and early detection of and respond to infectious disease threats. Currently, Ghana has not yet formalized a national One Health policy. The lack of a clearly defined multisectoral platform and limited collaboration among key Ghanaian Ministries, Departments, and Agencies has impacted the country’s ability to effectively mitigate and respond to emerging and reemerging zoonoses. Many of these emerging zoonoses are caused by viruses, which, because of their diversity and evolutionary properties, are perceived to pose the greatest threat to global health security. Here, we review viral zoonoses of national importance and priority in Ghana, highlight recent advancements in One Health capacities, and discuss opportunities for implementing One Health approaches to mitigate zoonotic disease threats

    Captive Eidolon helvum serology

    No full text
    Sample dates, bat ID numbers, and NiVsG mean fluorescence index (MFI) values from Luminex assays applied to blood samples from captive Eidolon helvum

    Rushing for “burned” food: Why and how does a group of patas monkeys (Erythrocebus patas) reach freshly burned areas?

    No full text
    Recently, considerable attention has been paid to animal adaptations to anthropogenic environments, such as foraging in burned areas where plants are promoted to regenerate by anthropogenic burning. However, among primates, reports on the utilization of resources that are available immediately after burning have been limited to a few primate species. In this study, we investigated and compared the activity budgets and food categories of a group of patas monkeys (Erythrocebus patas) in freshly burned areas by comparing them with those in previously burned areas and unburned areas. We also assessed the proportion of time spent in the freshly burned area before and after the fire: GPS collars were fitted to five of the six adults in the group, and their patterns when they traveled toward freshly burned and unburned feeding areas were compared. Patas monkeys spent more time in freshly burned areas after the fire, and they visited such areas mostly for feeding, particularly on roasted seeds of Cissus populnea. Furthermore, patas monkeys traveled faster and in a more synchronized way toward freshly burned areas. This “apparent goal-directed” travel began at least 1 h before arriving. Results indicate that the group recognized freshly burned areas as valuable, and the monkeys were able to travel in a goal-directed manner to them despite their variable locations. We suggest that smoke from freshly burned areas provides a visual cue with which to orient to the burned areas. Our results also support the notion that some primates are flexible enough to adapt to and benefit from anthropogenic environmental changes.パタスモンキーの人為的環境への適応性 燃えたての野焼き地へ群れで駆けつける. 京都大学プレスリリース. 2024-03-08
    corecore