1,006 research outputs found

    Improved measurements of ICRF antenna input impedance at ASDEX upgrade during ICRF coupling studies

    Get PDF
    A new set of diagnostics has been implemented on ASDEX Upgrade to measure the input impedance of the ICRF antennas, in the form of a voltage and current probe pair installed on each feeding line of every antenna. Besides allowing the measurement of the reflection coefficient Gamma of each antenna port, the probes have two advantages: first, they are located close to the antenna ports (similar to 3 m) and thus the measurements are not affected by the uncertainties due to the transmission and matching network; second, they are independent of matching conditions. These diagnostics have been used to study the behavior of the ASDEX Upgrade antennas while changing the plasma shape (low to high triangularity) and applying magnetic perturbations (MPs) via saddle coils. Scans in the separatrix position R-sep were also performed. Upper triangularity delta(o) was increased from 0.1 to 0.3 (with the lower triangularity delta(o) kept roughly constant at 0.45) and significant decreases in vertical bar Gamma vertical bar (up to similar to 30%, markedly improving antenna coupling) and moderate changes in phase (up to similar to 5 degrees) off on each feeding line were observed approximately at delta(o) >= 0.29. During MPs (in similar to 0.5 s pulses with a coil current of 1 kA), a smaller response was observed: 6% - 7% in vertical bar Gamma vertical bar, with changes in phase of 5 apparently due to R p scans only. As 1 is usually in the range 0.8 - 0.9, this still leads to a significant increase in possible coupled power. Numerical simulations of the antenna behavior were carried out using the FELICE code; the simulation results are in qualitative agreement with experimental measurements. The results presented here complement the studies on the influence of gas injection and MPs on the ICRF antenna performance presented in [4]

    Understanding the effect resonant magnetic perturbations have on ELMs

    Full text link
    All current estimations of the energy released by type I ELMs indicate that, in order to ensure an adequate lifetime of the divertor targets on ITER, a mechanism is required to decrease the amount of energy released by an ELM, or to eliminate ELMs altogether. One such amelioration mechanism relies on perturbing the magnetic field in the edge plasma region, either leading to more frequent, smaller ELMs (ELM mitigation) or ELM suppression. This technique of Resonant Magnetic Perturbations (RMPs) has been employed to suppress type I ELMs at high collisionality/density on DIII-D, ASDEX Upgrade, KSTAR and JET and at low collisionality on DIII-D. At ITER-like collisionality the RMPs enhance the transport of particles or energy and keep the edge pressure gradient below the 2D linear ideal MHD critical value that would trigger an ELM, whereas at high collisionality/density the type I ELMs are replaced by small type II ELMs. Although ELM suppression only occurs within limitied operational ranges, ELM mitigation is much more easily achieved. The exact parameters that determine the onset of ELM suppression are unknown but in all cases the magnetic perturbations produce 3D distortions to the plasma and enhanced particle transport. The incorporation of these 3D effects in codes will be essential in order to make quantitative predictions for future devices.Comment: 32 pages, 9 figure

    Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak

    Full text link
    Access conditions for full suppression of Edge Localised Modes (ELMs) by Magnetic Perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kink-modes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, 3.3×10193.3 \times 10^{19}~m−3^{-3}. The edge collisionality is in the range νi∗=0.15−0.42\nu^*_i = 0.15-0.42 (ions) and νe∗=0.15−0.25\nu^*_e = 0.15-0.25 (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30\% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q95q_{95} lies within a certain window. Within the range probed so far, q95=3.5−4.2q_{95}=3.5-4.2, one such window, q95=3.57−3.95q_{95}=3.57-3.95 has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region, for which two-fluid MHD models predict that the resistive plasma response to the applied MP is shielded
    • …
    corecore