1,517 research outputs found
Te/Ti effects on JET energy confinement properties
Lately the question has been raised if a modification of the
energy-confinement scaling law with respect to the electron to ion temperature
ratio, Te/Ti, is required. Theoretically, like in e.g. the Weiland model, the
confinement is thought to degrade with Te/Ti and studies of the hot-ion
(Ti>/Te) mode seems to corroborate this. In this paper, it is shown that due to
a number of effects that cancel each other out, the energy confinement time
remains constant for Te/Ti>~1. The numerical study relies on a series of JET
shots specifically designed to reveal an effect of Te/Ti in the hot-electron
(Te>Ti) mode. A distinct effort was made to keep all current scaling-law
parameters constant, including the total heating power. The effects that
provide the constant confinement times have therefore nothing to do with the
global properties of the plasma, but are rather due to variations in the
temperature gradients which affects the transport locally.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Divertor Heat Load in ASDEX Upgrade L-Mode in Presence of External Magnetic Perturbation
Power exhaust is one of the major challenges for a future fusion device.
Applying a non-axisymmetric external magnetic perturbation is one technique
that is studied in order to mitigate or suppress large edge localized modes
which accompany the high confinement regime in tokamaks. The external magnetic
perturbation brakes the axisymmetry of a tokamak and leads to a 2D heat flux
pattern on the divertor target. The 2D heat flux pattern at the outer divertor
target is studied on ASDEX Upgrade in stationary L-Mode discharges. The
amplitude of the 2D characteristic of the heat flux depends on the alignment
between the field lines at the edge and the vacuum response of the applied
magnetic perturbation spectrum. The 2D characteristic reduces with increasing
density. The increasing divertor broadening with increasing density is
proposed as the main actuator. This is supported by a generic model using field
line tracing and the vacuum field approach that is in quantitative agreement
with the measured heat flux. The perturbed heat flux, averaged over a full
toroidal rotation of the magnetic perturbation, is identical to the
non-perturbed heat flux without magnetic perturbation. The transport
qualifiers, power fall-off length and divertor broadening , are
the same within the uncertainty compared to the unperturbed reference. No
additional cross field transport is observed.Comment: 23 pages, 28 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Plasma Physics and
Controlled Fusion. IoP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
Improved measurements of ICRF antenna input impedance at ASDEX upgrade during ICRF coupling studies
A new set of diagnostics has been implemented on ASDEX Upgrade to measure the input impedance of the ICRF antennas, in the form of a voltage and current probe pair installed on each feeding line of every antenna. Besides allowing the measurement of the reflection coefficient Gamma of each antenna port, the probes have two advantages: first, they are located close to the antenna ports (similar to 3 m) and thus the measurements are not affected by the uncertainties due to the transmission and matching network; second, they are independent of matching conditions.
These diagnostics have been used to study the behavior of the ASDEX Upgrade antennas while changing the plasma shape (low to high triangularity) and applying magnetic perturbations (MPs) via saddle coils. Scans in the separatrix position R-sep were also performed. Upper triangularity delta(o) was increased from 0.1 to 0.3 (with the lower triangularity delta(o) kept roughly constant at 0.45) and significant decreases in vertical bar Gamma vertical bar (up to similar to 30%, markedly improving antenna coupling) and moderate changes in phase (up to similar to 5 degrees) off on each feeding line were observed approximately at delta(o) >= 0.29. During MPs (in similar to 0.5 s pulses with a coil current of 1 kA), a smaller response was observed: 6% - 7% in vertical bar Gamma vertical bar, with changes in phase of 5 apparently due to R p scans only. As 1 is usually in the range 0.8 - 0.9, this still leads to a significant increase in possible coupled power. Numerical simulations of the antenna behavior were carried out using the FELICE code; the simulation results are in qualitative agreement with experimental measurements. The results presented here complement the studies on the influence of gas injection and MPs on the ICRF antenna performance presented in [4]
- …