30,598 research outputs found
Finding the far right online: an exploratory study of white supremacist websites
White supremacists and the Far Right political movement in the UK have, had considerable success in spreading their messages through Web sites. Some of these Web sites clearly contribute to an enabling environment for racially motivated violence in our towns and cities and possibly help to underpin also the rise of, and support for, the Far Right in the UK and elsewhere in Europe. From a position that acknowledges the enduring issue of white hegemony in Western societies, this paper provides a number of research-based recommendations for further research and future policy and practice in tackling white supremacist racial hatred on the Net
Recommended from our members
Diasporic Literary Archives Network and the Commonwealth: Namibia, Nigeria, Trinidad & Tobago, and other examples
This article brings together three themes: primary sources for the study of literature; the diasporic nature of literary manuscripts; and the impact of the diaspora on the English-speaking world, in general, and the Commonwealth, in particular. The article begins by describing some general characteristics of literary manuscripts, focusing in particular on their diasporic nature. It then outlines the work of the project known as the Diasporic Literary Archives Network in the years 2012-15. It concludes with an assessment of the archival diaspora as it affects cultural and literary heritage work in Commonwealth countries
Deep Ordinal Reinforcement Learning
Reinforcement learning usually makes use of numerical rewards, which have
nice properties but also come with drawbacks and difficulties. Using rewards on
an ordinal scale (ordinal rewards) is an alternative to numerical rewards that
has received more attention in recent years. In this paper, a general approach
to adapting reinforcement learning problems to the use of ordinal rewards is
presented and motivated. We show how to convert common reinforcement learning
algorithms to an ordinal variation by the example of Q-learning and introduce
Ordinal Deep Q-Networks, which adapt deep reinforcement learning to ordinal
rewards. Additionally, we run evaluations on problems provided by the OpenAI
Gym framework, showing that our ordinal variants exhibit a performance that is
comparable to the numerical variations for a number of problems. We also give
first evidence that our ordinal variant is able to produce better results for
problems with less engineered and simpler-to-design reward signals.Comment: replaced figures for better visibility, added github repository, more
details about source of experimental results, updated target value
calculation for standard and ordinal Deep Q-Networ
Use of capillary electrophoresis as a method development tool for classical gel electrophoresis
Capillary electrophoresis (CE) was used to optimize the
buffer pH, ionic strength and sulfated cyclodextrin
concentrations for enantiomeric separation of piperoxan.
These enantioseparation conditions were then applied to a
classical gel electrophoresis system. Binding constants of
the sulfated beta-cyclodextrin–piperoxan couple were
approximated using CE and the effects of organic solvents
on the system were also investigated
Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation
We present here an investigation of the chemical composition of the various regions in the core of the
Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the
1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation
and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry.
A global analysis of the observed abundances shows that the markedly different chemical compositions of
the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving,
initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition
of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated
N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact
Eliminating Network Protocol Vulnerabilities Through Abstraction and Systems Language Design
Incorrect implementations of network protocol message specifications affect
the stability, security, and cost of network system development. Most
implementation defects fall into one of three categories of well defined
message constraints. However, the general process of constructing network
protocol stacks and systems does not capture these categorical con- straints.
We introduce a systems programming language with new abstractions that capture
these constraints. Safe and efficient implementations of standard message
handling operations are synthesized by our compiler, and whole-program analysis
is used to ensure constraints are never violated. We present language examples
using the OpenFlow protocol
Recommended from our members
Appendix 1. Authors and their papers: a guidance sheet for authors and writers
Equilibrium radiative heating tables for Earth entry
The recent resurgence of interest in blunt-body atmospheric entry for applications such as aeroassisted orbital transfer and planetary return has engendered a corresponding revival of interest in radiative heating. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. Sutton developed an inviscid, stagnation point, radiation coupled flow field code for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data, and reasonable agreement has been found. To provide information for entry body studies in support of lunar and Mars return scenarios of interest in the 1970's, the code was exercised over a matrix of Earth entry conditions. Recently, this matrix was extended slightly to reflect entry vehicle designs of current interest. Complete results are presented
Synthesizing Program Input Grammars
We present an algorithm for synthesizing a context-free grammar encoding the
language of valid program inputs from a set of input examples and blackbox
access to the program. Our algorithm addresses shortcomings of existing grammar
inference algorithms, which both severely overgeneralize and are prohibitively
slow. Our implementation, GLADE, leverages the grammar synthesized by our
algorithm to fuzz test programs with structured inputs. We show that GLADE
substantially increases the incremental coverage on valid inputs compared to
two baseline fuzzers
- …
