13 research outputs found
Applying a temporal systematics model to vector Apodizing Phase Plate coronagraphic data: TRAP4vAPP
The vector Apodizing Phase Plate (vAPP) is a pupil plane coronagraph that
suppresses starlight by forming a dark hole in its point spread function (PSF).
The unconventional and non-axisymmetrical PSF arising from the phase
modification applied by this coronagraph presents a special challenge to
post-processing techniques. We aim to implement a recently developed
post-processing algorithm, temporal reference analysis of planets (TRAP) on
vAPP coronagraphic data. The property of TRAP that uses non-local training
pixels, combined with the unconventional PSF of vAPP, allows for more
flexibility than previous spatial algorithms in selecting reference pixels to
model systematic noise. Datasets from two types of vAPPs are analysed: a double
grating-vAPP (dgvAPP360) that produces a single symmetric PSF and a
grating-vAPP (gvAPP180) that produces two D-shaped PSFs. We explore how to
choose reference pixels to build temporal systematic noise models in TRAP for
them. We then compare the performance of TRAP with previously implemented
algorithms that produced the best signal-to-noise ratio (S/N) in companion
detections in these datasets. We find that the systematic noise between the two
D-shaped PSFs is not as temporally associated as expected. Conversely, there is
still a significant number of systematic noise sources that are shared by the
dark hole and the bright side in the same PSF. We should choose reference
pixels from the same PSF when reducing the dgvAPP360 dataset or the gvAPP180
dataset with TRAP. In these datasets, TRAP achieves results consistent with
previous best detections, with an improved S/N for the gvAPP180 dataset.Comment: 15 pages, 10 figures, accepted to A&
Prioritizing High-Precision Photometric Monitoring of Exoplanet and Brown Dwarf Companions with JWST -- Strategic Exoplanet Initiatives with HST and JWST White Paper
We advocate for the prioritization of high-precision photometric monitoring
of exoplanet and brown dwarf companions to detect brightness variability
arising from features in their atmospheres. Measurements of photometric
variability provide not only an insight into the physical appearances of these
companions, but are also a direct probe of their atmospheric structures and
dynamics, and yield valuable estimates of their rotation periods. JWST is
uniquely capable of monitoring faint exoplanet companions over their full
rotation periods, thanks to its inherent stability and powerful high-contrast
coronagraphic imaging modes. Rotation period measurements can be further
combined with measurements of v sin i obtained using high-resolution
spectroscopy to infer the viewing angle of a companion. Photometric monitoring
over multiple rotation periods and at multiple epochs will allow both short-
and long-term time evolution in variability signals to be traced. Furthermore,
the differences between the layers in a companion's atmosphere can be probed by
obtaining simultaneous photometric monitoring at different wavelengths through
NIRCam dual-band coronagraphy. Overall, JWST will reach the highest
sensitivities to variability to date and enable the light curves of substellar
companions to be characterised with unprecedented cadence and precision at the
sub-percent level.Comment: 4 pages, 2 figures, white paper submitted in response to the call by
the Working Group on Strategic Exoplanet Initiatives with HST and JWST
(details at
https://outerspace.stsci.edu/display/HPR/Strategic+Exoplanet+Initiatives+with+HST+and+JWST
& final report at arXiv:2404.02932), adapted to include author list and
affiliation
Recommended from our members
Measuring the variability of directly imaged exoplanets using vector Apodizing Phase Plates combined with ground-based differential spectrophotometry
Clouds and other features in exoplanet and brown dwarf atmospheres cause variations in brightness as they rotate in and out of view. Ground-based instruments reach the high contrasts and small inner working angles needed to monitor these faint companions, but their small fields of view lack simultaneous photometric references to correct for non-astrophysical variations. We present a novel approach for making ground-based light curves of directly imaged companions using high-cadence differential spectrophotometric monitoring, where the simultaneous reference is provided by a double-grating 360○ vector Apodizing Phase Plate (dgvAPP360) coronagraph. The dgvAPP360 enables high-contrast companion detections without blocking the host star, allowing it to be used as a simultaneous reference. To further reduce systematic noise, we emulate exoplanet transmission spectroscopy, where the light is spectrally dispersed and then recombined into white-light flux. We do this by combining the dgvAPP360 with the infrared Arizona Lenslets for Exoplanet Spectroscopy integral field spectrograph on the Large Binocular Telescope Interferometer. To demonstrate, we observed the red companion HD 1160 B (separation ∼780 mas) for one night, and detec
The JWST weather report from the nearest brown dwarfs I: multiperiod JWST NIRSpec + MIRI monitoring of the benchmark binary brown dwarf WISE 1049AB
We report results from 8 h of JWST/MIRI low resolution spectroscopic (LRS) monitoring directly followed by 7 h of JWST/NIRSpec prism spectroscopic monitoring of the benchmark binary brown dwarf WISE 1049AB, the closest, brightest brown dwarfs known. We find water, methane, and CO absorption features in both components, including the 3.3 μm methane absorption feature and a tentative detection of small grain (8.5 μm in WISE 1049A. Both components vary significantly (> 1per cent), with WISE 1049B displaying larger variations than WISE 1049A. Using K-means clustering, we find three main transition points in wavelength for both components of the binary: (1) change in behaviour at ∼2.3 μm coincident with a CO absorption bandhead, (2) change in behaviour at 4.2 μm, close to the CO fundamental band at λ > 4.4 µm, and (3) change in behaviour at 8.3–8.5 µm, potentially corresponding to silicate absorption. We interpret the light curves observed with both NIRSpec and MIRI as likely stemming from (1) a deep pressure level driving the double-peaked variability seen in WISE 1049B at wavelengths 8.5 µm, (2) an intermediate pressure level shaping the light-curve morphology between 2.3 and 4.2 µm, and (3) a higher altitude pressure level producing single-peaked and plateaued light-curve behaviour between 4.2 and 8.5 µm.Published versio
The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at
We present aperture masking interferometry (AMI) observations of the star HIP
65426 at as a part of the \textit{JWST} Direct Imaging Early
Release Science (ERS) program obtained using the Near Infrared Imager and
Slitless Spectrograph (NIRISS) instrument. This mode provides access to very
small inner working angles (even separations slightly below the Michelson limit
of for an interferometer), which are inaccessible with the
classical inner working angles of the \textit{JWST} coronagraphs. When combined
with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the
potential to probe a new portion of parameter space across a wide array of
astronomical observations. Using this mode, we are able to achieve a contrast
of \,mag relative to the host star at a separation
of {\sim}0.07\arcsec but detect no additional companions interior to the
known companion HIP\,65426\,b. Our observations thus rule out companions more
massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations
from HIP\,65426, a region out of reach of ground or
space-based coronagraphic imaging. These observations confirm that the AMI mode
on \textit{JWST} is sensitive to planetary mass companions orbiting at the
water frost line, even for more distant stars at 100\,pc. This result
will allow the planning and successful execution of future observations to
probe the inner regions of nearby stellar systems, opening essentially
unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry
(AMI) mode on board the James Webb Space Telescope Near Infrared Imager and
Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables,
AMI accesses inner working angles down to and even within the classical
diffraction limit. The scientific potential of this mode has recently been
demonstrated by the Early Release Science (ERS) 1386 program with a deep search
for close-in companions in the HIP 65426 exoplanetary system. As part of ERS
1386, we use the same dataset to explore the random, static, and calibration
errors of NIRISS AMI observables. We compare the observed noise properties and
achievable contrast to theoretical predictions. We explore possible sources of
calibration errors, and show that differences in charge migration between the
observations of HIP 65426 and point-spread function calibration stars can
account for the achieved contrast curves. Lastly, we use self-calibration tests
to demonstrate that with adequate calibration, NIRISS AMI can reach contrast
levels of mag. These tests lead us to observation planning
recommendations and strongly motivate future studies aimed at producing
sophisticated calibration strategies taking these systematic effects into
account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI,
with sensitivity to significantly colder, lower mass exoplanets than
ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems V: Do Self-Consistent Atmospheric Models Represent JWST Spectra? A Showcase With VHS 1256 b
The unprecedented medium-resolution (R~1500-3500) near- and mid-infrared
(1-18um) spectrum provided by JWST for the young (140+/-20Myr) low-mass
(12-20MJup) L-T transition (L7) companion VHS1256b gives access to a catalogue
of molecular absorptions. In this study, we present a comprehensive analysis of
this dataset utilizing a forward modelling approach, applying our Bayesian
framework, ForMoSA. We explore five distinct atmospheric models to assess their
performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O,
gamma, fsed, and R. Our findings reveal that each parameter's estimate is
significantly influenced by factors such as the wavelength range considered and
the model chosen for the fit. This is attributed to systematic errors in the
models and their challenges in accurately replicating the complex atmospheric
structure of VHS1256b, notably the complexity of its clouds and dust
distribution. To propagate the impact of these systematic uncertainties on our
atmospheric property estimates, we introduce innovative fitting methodologies
based on independent fits performed on different spectral windows. We finally
derived a Teff consistent with the spectral type of the target, considering its
young age, which is confirmed by our estimate of log(g). Despite the
exceptional data quality, attaining robust estimates for chemical abundances
[M/H] and C/O, often employed as indicators of formation history, remains
challenging. Nevertheless, the pioneering case of JWST's data for VHS1256b has
paved the way for future acquisitions of substellar spectra that will be
systematically analyzed to directly compare the properties of these objects and
correct the systematics in the models.Comment: 32 pages, 16 figures, 6 tables, 2 appendice
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. IV. NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same data set to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration NIRISS F380M AMI can reach contrast levels of ∼9–10 mag at ≳λ/D. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower-mass exoplanets than lower-contrast ground-based AMI setups, at orbital separations inaccessible to JWST coronagraphy
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. V. Do Self-consistent Atmospheric Models Represent JWST Spectra? A Showcase with VHS 1256–1257 b
The unprecedented medium-resolution (R λ ∼ 1500–3500) near- and mid-infrared (1–18 μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20 MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework, ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O, γ, f sed, and R. Our findings reveal that each parameter’s estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived a Teff consistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST’s data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models
Reproduction package for the paper "High-contrast observations of brown dwarf companion HR 2562 B with the vector Apodizing Phase Plate coronagraph"
This is a basic reproduction package for the paper "High-contrast observations of brown dwarf companion HR 2562 B with the vector Apodizing Phase Plate coronagraph" by Sutlieff et al. (2021). It aims to provide the most important data products to check and reproduce the main results of the paper