25 research outputs found

    Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003

    Get PDF
    BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections. RESULTS: STEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx(1 )genes, 49 (51%) possessed stx(2 )genes, and 19 (20%) both stx(1 )and stx(2). Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx(1 )eae-β1, O157:H7 stx(1)stx(2 )eae-γ1 and O157:H7 stx(2)eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses. CONCLUSION: The results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx(1 )eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef

    Shiga-like-toxin-producing Escherichia coli in retail meats and cattle in Thailand.

    No full text
    Specific DNA probes were used to identify Shiga-like toxin I (SLT I)- and SLT II-producing Escherichia coli in vegetables, meats, cattle, and farm animals in Thailand. SLT-producing E. coli was isolated from 9% of market beef specimens, from 8 to 28% of fresh beef specimens at slaughterhouses, and from 11 to 84% of fecal specimens from cattle. Animals were frequently infected with several different SLT-producing E. coli types that hybridized with either the SLT I, SLT II, or both SLT probes. Of 119 SLT-producing E. coli isolates, 24% hybridized with the SLT I probe, 31% hybridized with the SLT II probe, and 44% hybridized with both SLT probes. The enterohemorrhagic E. coli plasmid probe hybridized with 64% (68 of 106) of SLT-producing E. coli isolates from food and cattle and with 8% (17 of 201) of E. coli isolates from pigs. No SLT-producing E. coli was detected in pigs. Seventy-six percent (26 of 34) of E. coli isolates that hybridized with the SLT II probe were cytotoxic to Vero but not to HeLa cells, suggesting that they produced the variant of SLT II. The high prevalence of SLT-producing E. coli in beef-producing animals suggests that exposure to animals and eating beef may pose a health risk for acquiring enterohemorrhagic E. coli infections in Thailand

    Restriction fragment length polymorphism of the tdh and trh genes in clinical Vibrio parahaemolyticus strains.

    No full text
    The restriction fragment length polymorphism of the genes encoding thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh) was analyzed for 137 strains of Vibrio parahaemolyticus isolated from specimens from diarrheal patients in Thailand. The HindIII restriction fragment patterns of tdh and trh were grouped into five and four types, respectively. A strong association between the restriction fragment patterns of tdh and trh was observed with V. parahaemolyticus strains
    corecore