22 research outputs found

    Association of the Synapse-Associated Protein 97 (SAP97) Gene Polymorphism With Neurocognitive Function in Schizophrenic Patients

    Get PDF
    The SAP97 gene is located in the schizophrenia susceptibility locus 3q29, and it encodes the synaptic scaffolding protein that interacts with the N-methyl-D-aspartate (NMDA) receptor, which is presumed to be dysregulated in schizophrenia. In this study, we genotyped a single-nucleotide polymorphism (SNP) (rs3915512) in the SAP97 gene in 1114 patients with schizophrenia and 1036 healthy-matched controls in a Han Chinese population through the improved multiplex ligation detection reaction (imLDR) technique. Then, we analyzed the association between this SNP and the patients' clinical symptoms and neurocognitive function. Our results showed that there were no significant differences in the genotype and allele frequencies between the patients and the controls for the rs3915512 polymorphism. However, patients with the rs3915512 polymorphism TT genotype had higher neurocognitive function scores (list learning scores, symbol coding scores, category instances scores and controlled oral word association test scores) than the subjects with the A allele (P = 4.72 × 10−5, 0.027, 0.027, 0.013, respectively). Our data are the first to suggest that the SAP97 rs3915512 polymorphism may affect neurocognitive function in patients with schizophrenia

    Schizophrenia plausible protective effect of microRNA-137 is potentially related to estrogen and prolactin in female patients

    Get PDF
    BackgroundSchizophrenia (SCZ) is a serious chronic mental disorder. Our previous case–control genetic association study has shown that microRNA-137 (miR-137) may only protect females against SCZ. Since estrogen, an important female sex hormone, exerts neuroprotective effects, the relationship between estrogen and miR-137 in the pathophysiology of SCZ was further studied in this study.MethodsGenotyping of single-nucleotide polymorphism rs1625579 of miR-137 gene in 1,004 SCZ patients and 896 healthy controls was conducted using the iMLDR assay. The effect of estradiol (E2) on the miR-137 expression was evaluated on the human mammary adenocarcinoma cell line (MCF-7) and the mouse hippocampal neuron cell line (HT22). The relationships between serum E2, prolactin (PRL), and peripheral blood miR-137 were investigated in 41 SCZ patients and 43 healthy controls. The miR-137 and other reference miRNAs were detected by real-time fluorescent quantitative reverse transcription-PCR.ResultsBased on the well-known SNP rs1625579, the distributions of protective genotypes and alleles of the miR-137 gene were not different between patients and healthy controls but were marginally significantly lower in female patients. E2 upregulated the expression of miR-137 to 2.83 and 1.81 times in MCF-7 and HT22 cells, respectively. Both serum E2 and blood miR-137 were significantly decreased or downregulated in SCZ patients, but they lacked expected positive correlations with each other in both patients and controls. When stratified by sex, blood miR-137 was negatively correlated with serum E2 in female patients. On the other hand, serum PRL was significantly increased in SCZ patients, and the female patients had the highest serum PRL level and a negative correlation between serum PRL and blood miR-137.ConclusionThe plausible SCZ-protective effect of miR-137 may be female specific, of which the underlying mechanism may be that E2 upregulates the expression of miR-137. This protective mechanism may also be abrogated by elevated PRL in female patients. These preliminary findings suggest a new genetic/environmental interaction mechanism for E2/miR-137 to protect normal females against SCZ and a novel E2/PRL/miR-137-related pathophysiology of female SCZ, implying some new antipsychotic ways for female patients in future

    Genetic Variability of TCF4 in Schizophrenia of Southern Chinese Han Population: A Case-Control Study

    Get PDF
    Objective: Schizophrenia is thought to be a neurodevelopmental disorder. As a key regulator in the development of the central nervous system, transcription factor 4 (TCF4) has been shown to be involved in the pathogenesis of schizophrenia. The aim of our study was to assay the association of TCF4 single nucleotide polymorphisms (SNPs) with schizophrenia and the effect of these SNPs on phenotypic variability in schizophrenia in Southern Chinese Han Population.Methods: Four SNPs (rs9960767, rs2958182, rs4309482, and rs12966547) of TCF4 were genotyped in 1137 schizophrenic patients and 1035 controls in a Southern Chinese Han population using the improved multiplex ligation detection reaction (iMLDR) technique. For patients with schizophrenia, the severity of symptom phenotypes was analyzed by the five-factor model of the Positive and Negative Symptom Scale (PANSS). Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) scale.Results: The results showed that the genotypes and alleles of the three SNPs (rs2958182, rs4309482, and rs12966547) were not significantly different between the control group and the case group (all P > 0.05). rs9960767 could not be included in the statistics for the extremely low minor allele frequency. However, the genotypes of rs4309482 shown a potential risk in the positive symptoms (P = 0.04) and excitement symptoms (P = 0.04) of the five-factor model of PANSS, but not survived in multiple test correction. The same potential risk was shown in the rs12966547 in positive symptoms of the PANSS (P = 0.03).Conclusion: Our results failed to find the associations of SNPs (rs2958182, rs4309482, and rs12966547) in TCF4 with schizophrenia in Southern Chinese Han Population

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Epidemiological Distribution of Stomach Cancer Using Geographic Information Systems: Worldwide, Asian, and US Asians

    No full text
    This project asks the following questions: what is the epidemiological distribution of the age-world-standardized incidence rates of stomach cancer in each country? What is the epidemiological distribution of the age-adjusted incidence rates of stomach cancer in each state across the United States? Is there race disparity of incidence rate of stomach cancer in the United States?https://openscholarship.wustl.edu/gis_poster/1092/thumbnail.jp

    A Machine Learning Approach for Hierarchical Localization Based on Multipath MIMO Fingerprints

    No full text

    Clinical Characteristics and Early Interventional Responses in Patients with Severe COVID-19 Pneumonia

    No full text
    Progressive acute respiratory distress syndrome (ARDS) is the most lethal cause in patients with severe COVID-19 pneumonia due to uncontrolled inflammatory reaction, for which we found that early intervention of combined treatment with methylprednisolone and human immunoglobulin is a highly effective therapy to improve the prognosis of COVID-19-induced pneumonia patients. Objective. Herein, we have demonstrated the clinical manifestations, laboratory, and radiological characteristics of patients with severe Coronavirus Disease-2019 (COVID-19) pneumonia, as well as measures to ensure early diagnosis and intervention for improving clinical outcomes of COVID-19 patients. Summary Background Data. The COVID-19 is a new infection caused by a severe acute respiratory syndrome- (SARS-) like coronavirus that emerged in China in December 2019 and has claimed millions of lives. Methods. We included 37 severe COVID-19 pneumonia patients who were hospitalized at Taizhou Public Health Medical Center in Zhejiang province from January 17, 2020, to February 18, 2020. Demographic, clinical, and laboratory features; imaging characteristics; treatment history; and clinical outcomes of all patients were collected from electronic medical records. Results. The patients’ mean age was 54 years (interquartile range, 43−64), with a slightly higher male preponderance (57%). The most common clinical features of COVID-19 pneumonia were fever (29 (78%)), dry cough (28 (76%)), dyspnea (9 (24%)), and fatigue (9 (24%)). Serum interleukin (IL)-6 and IL-10 were elevated in 35 (95%) and 19 (51%) patients, respectively. Chest computerized tomography scan revealed bilateral pneumonia in 35 (95%) patients. Early intervention with a combination of methylprednisolone and human immunoglobulin was highly effective in improving the prognosis of these patients. Conclusions. Progressive acute respiratory distress syndrome is the most common cause of death in patients with severe COVID-19 pneumonia owing to an uncontrolled inflammatory response. Early intervention with methylprednisolone and human immunoglobulin was highly effective in improving their prognosis

    SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65

    No full text
    Dengue virus (DENV) is a mosquito-borne single-stranded RNA virus causing human disease with variable severity. The production of massive inflammatory cytokines in dengue patients has been associated with dengue disease severity. However, the regulation of these inflammatory responses remains unclear. In this study, we report that SIRT6 is a negative regulator of innate immune responses during DENV infection. Silencing of Sirt6 enhances DENV-induced proinflammatory cytokine and chemokine production. Overexpression of SIRT6 inhibits RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) mediated NF-κB activation. The sirtuin core domain of SIRT6 is required for the inhibition of NF-κB p65 function. SIRT6 interacts with the DNA binding domain of p65 and competes with p65 to occupy the Il6 promoter during DENV infection. Collectively, our study demonstrates that SIRT6 negatively regulates DENV-induced inflammatory response via RLR and TLR3 signaling pathways

    MALDI-TOF mass spectrometry-based serotyping of V. parahaemolyticus isolated from the Zhejiang province of China

    No full text
    Abstract Background Vibrio parahaemolyticus is as an important food-borne pathogen circulating in China. Since 1996, the core serotype has become O3:K6, which has specific genetic markers. This serotype causes the majority of outbreaks worldwide. Until now, nearly 21 serotypes were considered as serovariants of O3:K6. Among these, O4:K68, O1:K25 and O1:KUT have caused pandemic outbreaks. O4:K8, a serovariant of O3:K6, has become the second most dominant serotype circulating in China after O3:K6. In this study, we report the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 146 V. parahaemolyticus isolates belonging to 23 serotypes. Results Upon mass spectral analysis, isolates belonging to O4:K8 formed a distinct group among the five main pandemic groups (O3:K6, O4:K8, O4:K68, O1:K25 and O1:KUT). Two major protein peaks (m/z 4383 and 4397) were significantly different between serotype O4:K8 and the four other pandemic strains. Both of these peaks were present in 32 out of 36 O4:K8 isolates, but were absent in 105 out of 110 non-O4:K8 isolates. These peaks were also absent in all 74 pandemic serotypes (O3:K6, O4:K68, O1:K25 and O1:KUT). Conclusion Our results highlight the threat of O4:K8 forming a distinct group, which differs significantly from pandemic serotypes on the proteomic level. The use of MALDI-TOF MS has not been reported before in a study of this nature. Mass spectrum peaks at m/z 4383 and 4397 may be specific for O4:K8. However, we cannot conclude that MALDI-TOF MS can be used to serotype V. parahaemolyticus

    Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria

    No full text
    The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial systems: 1,349 bacterial systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary gene cluster that lacks the restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection
    corecore