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Schizophrenia plausible
protective e�ect of
microRNA-137 is potentially
related to estrogen and prolactin
in female patients

Qian Peng†, Zhun Dai†, Jingwen Yin, Dong Lv, Xudong Luo,

Susu Xiong, Zhijiang Yang, Guangmin Chen, Yaxue Wei,

Ying Wang, Dandan Zhang, Lulu Wang, Debo Yu, Yusheng Zhao,

Dele Lin, Zhiyu Liao, Yongxi Zhong, Zhixiong Lin* and Juda Lin*

Department of Psychiatry, A�liated Hospital of Guangdong Medical University, Zhanjiang, China

Background: Schizophrenia (SCZ) is a serious chronic mental disorder. Our
previous case–control genetic association study has shown that microRNA-137
(miR-137) may only protect females against SCZ. Since estrogen, an important
female sex hormone, exerts neuroprotective e�ects, the relationship between
estrogen and miR-137 in the pathophysiology of SCZ was further studied in
this study.

Methods: Genotyping of single-nucleotide polymorphism rs1625579 of miR-137
gene in 1,004 SCZ patients and 896 healthy controls was conducted using
the iMLDR assay. The e�ect of estradiol (E2) on the miR-137 expression was
evaluated on the human mammary adenocarcinoma cell line (MCF-7) and the
mouse hippocampal neuron cell line (HT22). The relationships between serum E2,
prolactin (PRL), and peripheral bloodmiR-137were investigated in 41 SCZ patients
and 43 healthy controls. The miR-137 and other reference miRNAs were detected
by real-time fluorescent quantitative reverse transcription-PCR.

Results: Based on the well-known SNP rs1625579, the distributions of protective
genotypes and alleles of the miR-137 gene were not di�erent between patients
and healthy controls but were marginally significantly lower in female patients.
E2 upregulated the expression of miR-137 to 2.83 and 1.81 times in MCF-7 and
HT22 cells, respectively. Both serum E2 and blood miR-137 were significantly
decreased or downregulated in SCZ patients, but they lacked expected positive
correlations with each other in both patients and controls. When stratified by sex,
bloodmiR-137 was negatively correlated with serum E2 in female patients. On the
other hand, serum PRL was significantly increased in SCZ patients, and the female
patients had the highest serumPRL level and a negative correlation between serum
PRL and blood miR-137.

Conclusion: The plausible SCZ-protective e�ect of miR-137 may be female
specific, of which the underlying mechanism may be that E2 upregulates the
expression of miR-137. This protective mechanism may also be abrogated by
elevated PRL in female patients. These preliminary findings suggest a new
genetic/environmental interaction mechanism for E2/miR-137 to protect normal
females against SCZ and a novel E2/PRL/miR-137-related pathophysiology of
female SCZ, implying some new antipsychotic ways for female patients in future.
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Introduction

Schizophrenia (SCZ), a severe mental disorder with a lifetime

prevalence of ∼0.7% in populations worldwide, remains an

etiological and therapeutic challenge (1). In terms of epidemiology,

SCZ is modestly more common in men than in women, and

its peak age of women is usually 3–4 years later than that of

men, and there is a second peak age after menopause in women

(1, 2). For these reasons, many scientists believe that the female

sex hormone estrogen has a protective effect on SCZ by buffering

females against the occurrence and severity of the illness (3, 4).

Indeed, estrogen replacement therapy (ERT) has an adjunctive

antipsychotic effect (5, 6). However, ERT is suboptimal in efficacy

and has considerable side effects such as increased risks of breast

and endometrial cancers, sexual dysfunction, cardiovascular risk,

and metabolic syndrome (7, 8). Therefore, it is imperative to

conduct more mechanism research studies on the protective effect

of estrogen in order to improve the efficacy of ERT.

Genome-wide association studies have recently identifiedmany

high-risk loci or susceptibility genes for SCZ, including the

MIR137HG gene (encoding microRNA-137, miR-137) (9, 10).

Mounting correlation evidence implicates that miR-137 plausibly

exerts an important protective effect on SCZ. MiR-137 is one of

the neural tissue-specific miRNAs (11). Many of its target genes are

independently associated with SCZ (12–14). MiR-137 can control

neural synaptic function by regulating synaptogenesis, maturation,

and conduction (15, 16). The haplotype or genotype with the

low efficacy of miR-137 expression is the risk factor for SCZ

(17, 18). However, based on the single nucleotide polymorphism

(SNP) rs1625579, the SCZ-protective effect of miR-137 cannot be

consistently confirmed in case–control studies. Even in the same

Han population, there are both positive (17, 18) and negative

(19, 20) reports. Fortunately, our previous case–control study

based on other two functional SNPs rs1198588 and rs2660304

has confirmed the plausible protective effect of miR137 (21).

However, the SCZ-protective effect of miR-137 may be female

specific. However, our observation is relatively believable since

the negative symptom scores and the total Positive and Negative

Symptom Scale (PANSS) scores are significantly higher only in

female patients carrying the risk genotype of SNP rs1625579 (22).

Therefore, it can be speculated that female sex hormones are

involved in the SCZ-protective effect of miR-137. Recently, the

interactions between heredity and environmental factors in SCZ

have received much attention (23, 24). In fact, most of these

SCZ-associated high-risk loci are common mutation loci, and the

association efficiency of each change point is small (9), whichmeans

that each genetic change to take effect needs cooperation withmany

other genetic risk factors or enhancement by environmental factors.

Coincidently, female sex hormones and miR-137 that we focused

on here are environmental and genetic factors, respectively.

In this study, based on the well-known SNP rs1625579, a

plausible female-specific protective effect of miR-137 was also

marginally found. Estrogen (17β-estradiol, E2) upregulated the

expression of miR-137 in vitro. Both serum E2 and blood miR-

137 were significantly decreased or downregulated in SCZ patients.

The upregulation of miR-137 by E2 might be abrogated by elevated

prolactin (PRL) in female patients. These results suggest that the

SCZ-plausible protective effect of miR-137 potentially involves

estrogen, and further suggest some new genetic/environmental

interaction-related pathophysiology of female SCZ, implying some

promising ways to treat female SCZ or to promote the efficacy of

ERT in future.

Materials and methods

Subjects

A total of 1,004 SCZ patients and 896 healthy controls

were enrolled, and their peripheral anticoagulant blood was

routinely collected to extract genomic DNA for SNP genotyping

as mentioned in a previous report (21). The demographic

characteristics are shown in Supplementary Table 1. SCZ was

diagnosed according to the Diagnostic and Statistical Manual of

Mental Disorders (DSM-V), and patients’ clinical manifestations

and cognitive function were assessed using the PANSS and the Brief

Assessment of Cognition in Schizophrenia (BACS), respectively.

In order to study the relationships between female sex hormones

and miR-137, 41 SCZ treatment-naïve patients and 43 healthy

controls were consecutively enrolled from the Affiliated Hospital

of Guangdong Medical University from April 2020 to September

2021. Patients or healthy controls with severe physical illness,

pregnancy, or usage of sex hormones or contraceptive drugs

were excluded. None of the healthy controls had a personal or

family history of major mental disease or substance abuse. Their

demographic characteristics are shown in Supplementary Table 2.

Peripheral anticoagulant and non-anticoagulant blood as well as

basic clinical data were collected. Peripheral anticoagulant blood

was used for miRNA quantifications, and non-anticoagulant blood

was sent to a clinical lab for the detection of serum E2 and PRL.

SNP genotyping of miR-137 gene

SNP rs1625579 (T/G) of the miR-137 gene were genotyped

by the improved multiple link detection response (iMLDR,

Genesky Biotechnologies Inc., Shanghai, China) assay as described

previously (21). Genotypes and alleles were analyzed using

GeneMapper 4.1 software. Haplotypes were constructed using

Haploview 4.2 software. Only those haplotypes with frequencies

>3% were further analyzed.

Cell lines and E2 treatment

The sensitivity of human tissues to E2 varies greatly. The

breast and endometrium are sex hormone-sensitive tissues. Here,

the human mammary adenocarcinoma cell line (MCF-7) was

used to represent traditional sex hormone-sensitive tissues. On

the other hand, SCZ is a central nervous disease. Therefore, the

mouse hippocampal neuron cell line (HT22) was used to represent

human neural tissues. These cell lines were purchased from the

Cell Resource Center, Shanghai Institute of Biological Sciences,

and Chinese Academy of Sciences and were routinely cultivated
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in high-glucose DMEM medium with 10% fetal bovine serum

(Thermo Fisher Scientific Co., LTD, Shanghai, China). E2 (Sigma-

Aldrich, Shanghai, China) was used as an estrogen representative.

The cytotoxicity test (CCK8, Dojindo Laboratories, Japan) was

performed on these cell lines after treatment at 0–10 nM E2 for 6 h,

a peak time of the effect of E2 onmiRNAs (25). The similarly treated

cells were finally collected for miRNA quantifications.

MiRNA quantifications

Total RNAs of E2-treated cells and the peripheral anticoagulant

blood samples were extracted using the HiPure Blood RNA Mini

kit (Magen Biotechnology Co., Ltd, Guangzhou, China). MiRNAs

in these samples were detected by the real-time fluorescent

quantitative reverse transcription-PCR kit (Exodiagnosis

Biotechnology Co., Ltd, Guangzhou, China). The reverse

transcription of miRNAs was conducted using a stem-loop

primer method. The miRNAs and their corresponding primers

for reverse transcription and PCR amplification are shown in

Supplementary Table 3. In order to quantify miR-137 accurately,

we used three reference miRNAs that have been reported to be

elevated (miR-195), decreased (miR-34a), or uncertainly regulated

(miR-181b) after E2 treatment in vitro (26–28). Each test in vitro

had three parallel wells and was repeated twice. Each peripheral

blood sample was detected three times, and the mean was used for

statistical analyses.

Statistical analysis

The continuous variables were presented as the mean ±

standard deviation (SD) and compared by student’s t-test between

the two independent groups. Pearson’s chi-square test was used

to assess the Hardy–Weinberg equilibrium and the differences in

genotypic and allelic distributions between patients and controls.

Generalized odds ratios (ORs) with 95% confidence intervals

(CIs) of the alleles were also calculated. The correlations between

miR-137 and E2 or PRL were analyzed by Spearman correlation

analysis. A P-value of <0.05 was considered to be statistically

significant. Statistical analysis was performed using SPSS software

(version 21.0).

Results

SCZ-protective e�ect of miR-137 based on
SNP rs1625579

Our previous case–control study has found a female-specific

protective effect of miR-137 based on two functional SNPs

rs1198588 and rs2660304 (21). However, such female-related

characteristics of miR-137 were not found by many other scholars

based on SNP rs1625579 (17–20). In order to ascertain the female-

specific protective effect of miR-137, furthermore, SNP rs1625579

was genotyped in a large sample size of the Han population.

The distributions of genotypes and alleles were not significantly

different between total SCZ patients and healthy controls, but

the distributions of protective GG/GT genotypes and G allele

were marginally significantly lower in female patients than those

in female healthy controls (Table 1), which existed regardless

of the difference in gender distribution (Supplementary Table 1)

since similar P-value was obtained after adjustment of the

sex percentage of the patient group according to the control

group (Supplementary Table 4). Therefore, although the genetic

association with SCZ varies greatly as given SNPs, the female-

related characteristic of the protective effect of miR-137 truly exists

based on those genetic association studies.

E2 upregulated miR-137 expression in vitro

Both MCF-7 and HT22 cells constitutively expressed

detectable levels of miR-137 and other three miRNAs

(Supplementary Figure 1), implying that these cells were suitable

for the study on the relationship between E2 and miR-137.

Cytotoxicity tests showed that the maximum concentration of E2,

which let the viability of both cells maintain above 95%, was 5 nM

when the treatment time was 6 h (Figures 1A, C). Under such

treatment parameters, the expression of miR-137 in MCF-7 cells

was upregulated to 2.83 times (P < 0.001) (Figure 1B), and that in

HT22 cells was upregulated to 1.81 times (P < 0.05) (Figure 1D).

Among three reference miRNAs, miR-195 and miR-34a were

significantly upregulated in MCF-7 cells but were, respectively,

downregulated and remained unchanged in HT22 cells. As for

miR-181b, it remained unchanged in both MCF-7 and HT22 cells.

Dysregulations of serum E2 and blood
miR-137 in SCZ patients

Both serum E2 and bloodmiR-137 in patients were significantly

decreased or downregulated (P < 0.05 and P < 0.001, respectively)

(Figures 2A, B). Blood miR-137 in SCZ patients was only 33.7% of

that in healthy controls. When stratified by sex, blood miR-137 was

significantly different, but serum E2 was not, between patients and

controls in males and females, respectively. Furthermore, serum E2

was not correlated with blood miR-137 in both SCZ patients and

healthy controls (Figures 2C, D).

Gender influences on the correlation of
serum E2 with blood miR-137

Although serum E2 and blood miR-137 were synchronously

decreased in SCZ patients, their uncorrelations in patients and

healthy controls were not concordant with the in vitro results that

E2 upregulated the expression of miR-137. A possible explanation

is that gender significantly affects the relationship between serum

E2 and blood miR-137. Indeed, when stratified by sex, serum E2

in females was significantly higher than males in both patients

and controls (Figure 3A), but blood miR-137 was not different in

either patients or controls (Figure 3B). Obviously, serum E2 did not

upregulate miR-137 expression in vivo, suggesting that there was an

unknown factor that abrogated the miR-137 upregulation effect of
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TABLE 1 Genotype and allele frequencies of SNP rs1625579 in miR-137 gene in schizophrenic patients and healthy controls.

rs1625579 n Genotype, n (%) χ2 P Allele, n (%) χ2 P OR 95%CI χ2-HWE P-HWE

TT TG + GG T G

Total

Patients 1,004 898 (89.4) 106 (10.6) 2.17 0.141 1,898 (94.5) 110 (5.48) 2.47 0.116 1.24 0.95–1.62 0.36 0.547

Control 896 782 (87.3) 114 (12.7) 1,672 (93.3) 120 (6.70)

Male

Patients 634 559 (88.2) 75 (11.8) 0.33 0.564 1,190 (93.9) 78 (6.15) 0.46 0.496 1.12 0.81–1.56 0.17 0.670

Control 533 464 (87.1) 69 (12.9) 993 (93.2) 73 (6.85)

Female

Patients 370 339 (91.6) 31 (8.37) 3.18 0.074 708 (95.7) 32 (4.32) 3.32 0.068 1.53 0.97–2.43 0.15 0.699

Control 363 318 (87.6) 45 (12.4) 679 (93.5) 47 (6.47)

n, number individuals or alleles; OR, odds ratio; CI, confidence interval; HWE, Hardy–Weinberg equilibrium.

E2 in females. Moreover, serum E2 was not correlated with blood

miR-137 in male patients and male and female healthy controls

(Figures 3C, D, F) but was negatively correlated with blood miR-

137 in female patients (Figure 3E), suggesting that the unknown

factor is dominant in female patients.

Dysregulation of serum PRL in SCZ patients

The level and effect of E2 in vivo may be affected by PRL (3),

and PRL is also an important SCZ-related sex hormone (29, 30).

For these reasons, PRL was speculated as the above unknown

antagonistic factor and was detected in this study. As a result, PRL

was significantly increased in SCZ patients (Figure 4A). There was

also a significant difference between patients and controls in both

males and females. When stratified by sex, the increase in serum

PRL mainly occurred in female patients (Figure 4B). Furthermore,

serum PRL was uncorrelated with blood miR-137 in both patients

and healthy controls (Supplementary Figures 2A, B). It was also

uncorrelated with blood miR-137 in male SCZ patients and female

healthy controls (Figures 4C, F) but was negatively correlated with

blood miR-137 in male healthy controls (Figure 4D) and female

SCZ patients (Figure 4E). The negative correlation with blood miR-

137, together with the increased serum level, implies that PRL

indeed acted as an antagonist in female patients.

Discussion

Increasing correlation evidence has shown that miR-137 is

deeply involved in the pathophysiology of SCZ (9–15). However,

the underlying mechanisms remain elusive. Our previous study

has shown that miR-137 plays an SCZ-protective role in a female-

specific manner based on two functional SNPs rs1198588 and

rs2660304 (21). In this study, a marginal female-specific protective

effect of miR-137 was also found based on the well-known SNP

rs1625579. Furthermore, E2 was found to upregulate the expression

of miR-137 in sex hormone-sensitive tissues representing MCF-7

cells and neural tissues representing HT22 cells, and both serum E2

and blood miR-137 were significantly decreased or downregulated

in SCZ patients. On the other hand, the negative correlation

of serum E2 with blood miR-137, along with significantly

higher PRL in female patients, implies that miR-137 might be

upregulated by E2 but was potentially abrogated by PRL in

female patients. Therefore, it is suggested that the underlying

mechanism of the plausible female-specific SCZ-protective effect

of miR-137 involves estrogen, or miR-137 upregulation may be

one of the underlying mechanisms for estrogen to protect normal

females against SCZ. In female SCZ patients, however, such

protective effects of E2/miR-137 may be abrogated possibly by

the elevated PRL. These preliminary findings imply some new

ways to treat female SCZ or to promote the efficacy of ERT

in future.

SNP rs1625579 of the miR-137 gene is one of the strongest

genetic variant predictors of SCZ in GWAS (10, 24, 31). Its T

allele is identified as the major allele and the risk allele for SCZ,

implying that the minor G allele appears to be SCZ-protective.

The miR-137 levels are lower in the brains of neurotypical subjects

homozygous for the risk T allele (32). In contrast, the protective

minor G allele is associated with elevated miR-137 expression in

vitro (14, 33). Therefore, most authors believe that miR-137 itself is

SCZ-protective. However, the genetic correlation of SNP rs1625579

with SCZ is not consistently confirmed in large-scale case–control

studies (17–20), and the risk allele is highly prevalent in a healthy

population, suggesting that miR-137 dysregulation alone is highly

unlikely to cause SCZ, but miR-137 may influence how the brain

responds to other genetic and environmental risk factors for SCZ

(31). Coincidently, our previous study has shown that miR-137

plays a plausible protective role in a female-specific manner based

on genetic association analyses (21). Here, this unique manner was

inconclusively confirmed by SNP rs1625579 genotyping though

no definite genetic correlation with SCZ was found. Along with

that, the negative symptom scores and the total PANSS-score are

significantly higher only in females carrying the risk genotype

of SNP rs1625579 (22), and these studies strongly suggest that

female sex hormones as environmental factors are involved in

the underlying mechanism of the plausible SCZ-protective effect

of miR-137.
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FIGURE 1

E2-upregulated miR-137 expression in cell lines. MCF-7, human mammary adenocarcinoma cell line; HT22, mouse hippocampal neuron cell line;
E2, 17β-estradiol; miRNAs, microRNAs. (A) Cell viability test of MCF-7 cells. (B) MiR-137 expression in E2-treated MCF-7 cells. (C) Cell viability test of
HT22 cells. (D) MiR-137 expression in E2-treatd HT22 cells. *P < 0.05, **P < 0.01, ***P < 0.001.

E2 is the major form of estrogen. In this study, E2 was found to

increase the expressions of miR-137 in bothMCF-7 and HT22 cells,

which is consistent with the reports that estrogen can upregulate

or inhibit the expressions of other miRNAs (25–27). It is very

difficult to directly study miR-137 in the nervous system of SCZ

patients, and there is yet a lack of typical animal models of SCZ.

Therefore, the mouse hippocampal neuron cell line, HT22 (34),

a relatively feasible model for neuron research, was used and

confirmed to express miR-137 constitutionally, similar to primary

mouse hippocampal neurons (35). Combined with the fact that

estrogen alters the expression of many miRNAs in the ventral

and dorsal hippocampal gyrus of rats in an age- and region-

specific manner (36), it is suggested that the miR-137 upregulation

by E2 may take an important part in the pathophysiology of

SCZ. In other words, it is one of the underlying mechanisms for

estrogen to protect normal females against SCZ. On the other

hand, E2 did not drastically upregulate the expression of miR-

137 in vitro, which is in concordance with the small association

efficiency of each genetic change and the deficiency for miR-

137 to cause SCZ alone (9, 31). However, the moderate miR-

137 upregulation by E2 reasonably explains the female-specific

protective effect of miR-137 in normal females since the subtle

expression superiority of the protective genotype or allele may be

continuously enhanced by plenty of estrogens from embryogenesis

to before menopause in females. This new genetic/environmental

interaction mechanism also explains why the dysregulation of miR-

137 is not usually detected in the postmortem brains of SCZ

patients (31).

In order to clarify the significance of the miR-137 upregulation

by E2 in SCZ patients, serum E2 and peripheral blood miR-137

in SCZ patients and healthy controls were studied. Compared

with healthy controls, both serum E2 and blood miR-137 were
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FIGURE 2

Dysregulations of serum E2 and blood miR-137 in SCZ patients. E2, 17β-estradiol; miR-137, microRNA-137. Serum E2 (A) and blood miR-137 (B) in
SCZ patients and healthy controls. Correlation analyses of serum E2 with blood miR-137 in SCZ patients (C) and healthy controls (D). *P < 0.05, **P <

0.01, ***P < 0.001.

significantly decreased or downregulated in patients. The decrease

in E2 in SCZ patients is consistent with the conclusion in the

literature (3, 4). However, the downregulation of blood miR-

137 is not consistent with the reports by other scholars. There

were only four studies (two original studies, one review, and

one meta-analysis) related to the expression of miR-137 in the

peripheral blood of SCZ patients (37–40). Their conclusions

all show a significant upregulation. A possible explanation for

this inconsistency is that those studies use plasma rather than

whole peripheral blood as samples. Indeed, miRNAs in plasma

are different from those in PBMCs (41), and as many as 83

miRNAs in the peripheral blood of patients with SCZ are

decreased when detected using chip technology (42). Therefore,

the downregulated blood miR-137 found in SCZ patients in

this study is believable, and whole peripheral blood miR-137

seems to better reflect the essence of miR-137 deficiency in the

brain of SCZ patients. The decrease in both serum E2 and

blood miR-137 was consistent with the miR-137 upregulation

by E2 in the cell models and also consistent with their same

SCZ-protective effects, supporting that the miR-137 upregulation

by E2 may play important roles in protecting normal females

against SCZ.

Although it well-explains the female-specific protective effect

in the individuals carrying the protective minor allele, the

miR-137 upregulation by E2 cannot directly explain why most

individuals carrying the risk allele do not get sick. For this

reason, the relationship between serum E2 and blood miR-137

in SCZ patients and healthy controls were further investigated.

However, between serum E2 and blood miR-137, uncorrelations

rather than the expected positive correlations were found in

both patients and healthy controls. When stratified by sex, the

high levels of serum E2 did not lead to elevated blood miR-137

expression in female patients and female healthy controls and

even serum E2 was negatively correlated with blood miR-137 in

female patients, suggesting that miR-137 upregulation by E2 is

abrogated by some antagonistic factors in vivo. The assumptive

antagonist may be PRL since the level and effect of E2 may be

affected by PRL in vivo (3). Indeed, serum PRL was significantly
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FIGURE 3

Gender influence on the correlation of serum E2 with blood miR-137. E2, 17β-estradiol; miR-137, microRNA-137. Serum E2 (A) and blood miR-137
(B) in male and female individuals. Correlation analyses of serum E2 with blood miR-137 in male SCZ patients (C), male healthy controls (D), female
SCZ patients (E), and female healthy controls (F). *P < 0.05, **P < 0.01, ***P < 0.001.

increased in SCZ patients as reported (29). When stratified by sex,

female patients had the highest serum PRL level and a negative

correlation between serum PRL and blood miR-137, suggesting

that some females are still subjected to SCZ since the elevated

PRL potentially abrogates the plausible protective effect of the

miR-137 upregulation by E2. Therefore, the PRL blockage of the

miR-137 upregulation by E2 may form a novel E2/PRL/miR-137-

related pathophysiology of female SCZ. On the other hand, it is not
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FIGURE 4

Serum PRL and its correlations with blood miR-137. PRL, prolactin; miR-137, microRNA-137. Serum PRL in SCZ patients and healthy controls (A), and
in males and females (B). Correlation analyses of serum PRL with blood miR-137 in male SCZ patients (C), male healthy controls (D), female SCZ
patients (E), and female healthy controls (F). *P < 0.05, **P < 0.01, ***P < 0.001.

known why serum PRL in males, unlike in females, was negatively

correlated with blood miR-137 in healthy controls rather than in

SCZ patients. The possible explanation is that males develop into

SCZ in different manners. Consistently, SCZ-biased genes diverge

betweenmales and females when analyzed by single-cell sequencing

data (43).

The present study has several limitations. First, the cell lines

MCF-7 and HT22 are cancer cells and animal cells, respectively.
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They are not ideal models of brain physiology. Further studies

are needed to be carried out in more representative human cell

lines such as induced or transdifferentiated pluripotent stem cells

(44, 45). Second, the human sample used for correlation analyses

between miR-137 levels and sex hormones in this study was

small and was limited to the Han Chinese population. Thus,

our findings and conclusions in this study were preliminary.

Since our patients’ results originated only from correlations, other

approaches that can identify causality should be used in future. In

addition, further mechanism studies on animal models and in a

large sample of human subjects are needed to clarify the influences

of sex hormones on miR-137 expression and the significance

of such genetic/environmental interaction mechanisms in the

pathophysiology of SCZ.

Conclusion

The plausible female-specific SCZ-protective effect of miR-

137 potentially depends on the female sex hormone estrogen,

of which the underlying mechanism may be that E2 upregulates

the expression of miR-137. However, some females are still

susceptible to SCZ since the plausible protective effect of the

miR-137 upregulation by E2 may be abrogated by the elevated

PRL. Although more causality identification and mechanism

studies are imperative in future, our findings suggest a new

genetic/environmental interaction mechanism for E2/miR-137 to

protect normal females against SCZ and a novel E2/PRL/miR-137-

related pathogenesis of female SCZ and imply some new ways such

as ERT combined with PRL-lowering drugs to treat female SCZ

in future.
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