2,284 research outputs found

    Development of advanced digital techniques for data acquisition processing and communication Interim scientific report

    Get PDF
    Digital techniques for automatic evaluation of images and data compression algorithm

    Triangular retractor facilitates minimally invasive lobectomy

    Get PDF

    Functional anatomy of the masking level difference, an fMRI study

    Get PDF
    Introduction: Masking level differences (MLDs) are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. Methods: Ten participants (5 female), age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli). Band-pass (400-600 Hz) noise and an enveloped signal (.25 second tone burst, 50% duty-cycle) were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. Results: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. Conclusion: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition). The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing. © 2012 Wack et al

    Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy

    Full text link
    We introduce a weighed scalar average formalism ("q-average") for the study of the theoretical properties and the dynamics of spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models models. The "q-scalars" that emerge by applying the q-averages to the density, Hubble expansion and spatial curvature (which are common to FLRW models) are directly expressible in terms of curvature and kinematic invariants and identically satisfy FLRW evolution laws without the back-reaction terms that characterize Buchert's average. The local and non-local fluctuations and perturbations with respect to the q-average convey the effects of inhomogeneity through the ratio of curvature and kinematic invariants and the magnitude of radial gradients. All curvature and kinematic proper tensors that characterize the models are expressible as irreducible algebraic expansions on the metric and 4-velocity, whose coefficients are the q-scalars and their linear and quadratic local fluctuations. All invariant contractions of these tensors are quadratic fluctuations, whose q-averages are directly and exactly related to statistical correlation moments of the density and Hubble expansion scalar. We explore the application of this formalism to a definition of a gravitational entropy functional proposed by Hosoya et al (2004 Phys. Rev. Lett. 92 141302). We show that a positive entropy production follows from a negative correlation between fluctuations of the density and Hubble scalar, providing a brief outline on its fulfillment in various LTB models and regions. While the q-average formalism is specially suited for LTB and Szekeres models, it may provide a valuable theoretical insight on the properties of scalar averaging in inhomogeneous spacetimes in general.Comment: 27 pages in IOP format, 1 figure. Matches version accepted for publication in Classical and Quantum Gravit

    Back-reaction and effective acceleration in generic LTB dust models

    Full text link
    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and/or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature, though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein de Sitter background and in domains undergoing gravitational collapse, the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models.Comment: Final version accepted for publication in Classical and Quantum Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure

    Exact inhomogeneous cosmologies whose source is a radiation-matter mixture with consistent thermodynamics

    Full text link
    We derive a new class of exact solutions of Einstein's equations providing a physically plausible hydrodynamical description of cosmological matter in the radiative era (106K>T>103K10^6 K > T > 10^3 K), between nucleosynthesis and decoupling. The solutions are characterized by the Lema\^{\i}tre-Tolman -Bondi metric with a viscous fluid source, subjected to the following conditions: (a) the equilibrium state variables satisfy the equation of state of a mixture of an ultra-relativistic and a non-relativistic ideal gases, where the internal energy of the latter has been neglected, (b) the particle numbers of the mixture components are independently conserved, (c) the viscous stress is consistent with the transport equation and entropy balance law of Extended Irreversible Thermodynamics, with the coefficient of shear viscosity provided by Kinetic Theory for the `radiative gas' model. The fulfilment of (a), (b) and (c) restricts initial conditions in terms of an initial value function, Δi(s)\Delta_i^{(s)}, related to the average of spatial gradients of the fluctuations of photon entropy per baryon in the initial hypersurface. Constraints on the observed anisotropy of the microwave cosmic radiation and the condition that decoupling occurs at T=TD4×103T=T_{_D}\approx 4\times 10^3 K yield an estimated value: Δi(s)108|\Delta_i^{(s)}|\approx 10^{-8} which can be associated with a bound on promordial entropy fluctuations. The Jeans mass at decoupling is of the same order of magnitude as that of baryon dominated perturbation models (1016M\approx 10^{16} M_\odot)Comment: LaTeX with revtex (PRD macros). Contains 9 figures (ps). To be published in Physics Review

    Celebrity culture and public connection: bridge or chasm?

    Get PDF
    Media and cultural research has an important contribution to make to recent debates about declines in democratic engagement: is for example celebrity culture a route into democratic engagement for those otherwise disengaged? This article contributes to this debate by reviewing qualitative and quantitative findings from a UK project on 'public connection'. Using self-produced diaries (with in-depth multiple interviews) as well as a nationwide survey, the authors argue that while celebrity culture is an important point of social connection sustained by media use, it is not linked in citizens' own accounts to issues of public concern. Survey data suggest that those who particularly follow celebrity culture are the least engaged in politics and least likely to use their social networks to involve themselves in action or discussion about public-type issues. This does not mean 'celebrity culture' is 'bad', but it challenges suggestions of how popular culture might contribute to effective democracy

    Work-Related Mental Health and Job Performance: Can Mindfulness Help?

    Get PDF
    Work-related mental health issues such as work-related stress and addiction to work impose a significant health and economic burden to the employee, the employing organization, and the country of work more generally. Interventions that can be empirically shown to improve levels of work-related mental health – especially those with the potential to concurrently improve employee levels of work performance – are of particular interest to occupational stakeholders. One such broad-application interventional approach currently of interest to occupational stakeholders in this respect is mindfulness-based interventions (MBIs). Following a brief explication of the mindfulness construct, this paper critically discusses current research directions in the utilization of mindfulness in workplace settings and assesses its suitability for operationalization as an organization-level work-related mental health intervention. By effecting a perceptual-shift in the mode of responding and relating to sensory and cognitive-affective stimuli, employees that undergo mindfulness training may be able to transfer the locus of control for stress from external work conditions to internal metacognitive and attentional resources. Therefore, MBIs may constitute cost-effective organization-level interventions due to not actually requiring any modifications to human resource management systems and practises. Based on preliminary empirical findings and on the outcomes of MBI studies with clinical populations, it is concluded that MBIs appear to be viable interventional options for organizations wishing to improve the mental health of their employees

    Inhomogeneous cosmologies, the Copernican principle and the cosmic microwave background: More on the EGS theorem

    Get PDF
    We discuss inhomogeneous cosmological models which satisfy the Copernican principle. We construct some inhomogeneous cosmological models starting from the ansatz that the all the observers in the models view an isotropic cosmic microwave background. We discuss multi-fluid models, and illustrate how more general inhomogeneous models may be derived, both in General Relativity and in scalar-tensor theories of gravity. Thus we illustrate that the cosmological principle, the assumption that the Universe we live in is spatially homogeneous, does not necessarily follow from the Copernican principle and the high isotropy of the cosmic microwave background.Comment: 17 pages; to appear in GR
    corecore