42 research outputs found
Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression
BACKGROUND: Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1) gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. RESULTS: To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s). A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. CONCLUSION: Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells
Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model
© 2015 Sussan et al. Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7x1011 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections
Disruption of Nrf2, a Key Inducer of Antioxidant Defenses, Attenuates ApoE-Mediated Atherosclerosis in Mice
Background: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2-/-) causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. Principal Findings: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2-/- mice with apoliporotein E-deficient (ApoE-/- mice. ApoE-/- and ApoE-/- Nrf2-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE-/- Nrf2-/- mice exhibited significantly smaller plaque area than ApoE-/- controls (11.5% vs 29.5%). This decrease in plaque area observed in ApoE-/- Nrf2-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL) by isolated macrophages from ApoE-/- Nrf2-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE-/- Nrf2-/- mice exhibited decreased expression of the scavenger receptor CD36. Conclusions: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.9 page(s
Chronic Cigarette Smoke Causes Oxidative Damage and Apoptosis to Retinal Pigmented Epithelial Cells in Mice
The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85±3.7% of RPE cells counted compared to 9.5±3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086±332 nm) than those raised in air (543±132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0–3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0±1.1%) than room air (average 0±0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD
Intra-cluster knowledge exchange and frequency of product innovation in a digital cluster.
We investigate how intra-cluster knowledge exchange affects the frequency of product innovation. Based on self-administered survey data of digital SMEs from Bournemouth and Poole regions of England, this study shows that digital firms that sustain both temporary and prolonged relationships with outbound employees have a higher probability of introducing frequent product innovation. Moreover, while cognitive proximity and the use of external knowledge providers increase the probability of frequent product innovation, geographical proximity reduces it. Our findings suggest that managers of young digital firms with limited resources in peripheral regions should ‘act near’ before reaching out
Complex contributions ofEts2to craniofacial and thymus phenotypes of trisomic “Down syndrome” mice
152 hlm; 24 c
TUNEL labeling of RPE cells from mice exposed to cigarette smoke for 6 months.
<p>A. TUNEL labeled (red) RPE nuclei are indicated by the arrows. B. Nuclei are stained with DAPI (blue), as labeled by the arrows. C. Merged image of A and B separating TUNEL from DAPI only stained nuclei. D. Brightfield image of the RPE, choroid (Ch) and sclera (S). E. Merged image of a mouse raised in air for 6 months. Arrows point to blue DAPI without red TUNEL labeling. Bar = 15 μm.</p