643 research outputs found
Surjectivity of -adic regulator on of Tate curves
I prove the surjectivity of the -adic regulator from Quillen's of
Tate curve to the -adic etale cohomology group when the base field is
contained in a cyclotomic extension of . This implies the finiteness of
torsion part of of Tate curves thanks to Suslin's exact sequence
General linear and functor cohomology over finite fields
In recent years, there has been considerable success in computing Ext-groups
of modular representations associated to the general linear group by relating
this problem to one of computing Ext-groups in functor categories. In this
paper, we extend our ability to make such Ext-group calculations by
establishing several fundamental results. Throughout this paper, we work over
fields of positive characteristic p.Comment: 66 pages, published version, abstract added in migratio
Cohomology for Frobenius kernels of
Let be the -th Frobenius kernels of the group scheme
defined over an algebraically field of characteristic . In this paper we
give for a complete description of the cohomology groups for
. We also prove that the reduced cohomology ring
\opH^\bullet((SL_2)_r,k)_{\red} is Cohen-Macaulay. Geometrically, we show for
each that the maximal ideal spectrum of the cohomology ring for
is homeomorphic to the fiber product G\times_B\fraku^r. Finally,
we adapt our calculations to obtain analogous results for the cohomology of
higher Frobenius-Luzstig kernels of quantized enveloping algebras of type
.Comment: published version; a section for the case p=2 is adde
A geometric proof that SL_2(Z[t,t^-1]) is not finitely presented
We give a new proof of the theorem of Krstic-McCool from the title. Our proof
has potential applications to the study of finiteness properties of other
subgroups of SL_2 resulting from rings of functions on curves.Comment: This is the version published by Algebraic & Geometric Topology on 11
July 200
Bi-relative algebraic K-theory and topological cyclic homology
It is well-known that algebraic K-theory preserves products of rings.
However, in general, algebraic K-theory does not preserve fiber-products of
rings, and bi-relative algebraic K-theory measures the deviation. It was proved
by Cortinas that,rationally, bi-relative algebraic K-theory and bi-relative
cyclic homology agree. In this paper, we show that, with finite coefficients,
bi-relative algebraic K-theory and bi-relative topological cyclic homology
agree. As an application, we show that for a, possibly singular, curve over a
perfect field of positive characteristic p, the cyclotomic trace map induces an
isomorphism of the p-adic algebraic K-groups and the p-adic topological cyclic
homology groups in non-negative degrees. As a further application, we show that
the difference between the p-adic K-groups of the integral group ring of a
finite group and the p-adic K-groups of a maximal Z-order in the rational group
algebra can be expressed entirely in terms of topological cyclic homology
On the cohomological spectrum and support varieties for infinitesimal unipotent supergroup schemes
We show that if is an infinitesimal elementary supergroup scheme of
height , then the cohomological spectrum of is naturally
homeomorphic to the variety of supergroup homomorphisms
from a certain (non-algebraic) affine
supergroup scheme into . In the case , we further
identify the cohomological support variety of a finite-dimensional
-supermodule as a subset of . We then discuss how our
methods, when combined with recently-announced results by Benson, Iyengar,
Krause, and Pevtsova, can be applied to extend the homeomorphism
to arbitrary infinitesimal unipotent supergroup
schemes.Comment: Fixed some algebra misidentifications, primarily in Sections 1.3 and
3.3. Simplified the proof of Proposition 3.3.
Commuting varieties of -tuples over Lie algebras
Let be a simple algebraic group defined over an algebraically closed
field of characteristic and let \g be the Lie algebra of . It is
well known that for large enough the spectrum of the cohomology ring for
the -th Frobenius kernel of is homeomorphic to the commuting variety of
-tuples of elements in the nilpotent cone of \g
[Suslin-Friedlander-Bendel, J. Amer. Math. Soc, \textbf{10} (1997), 693--728].
In this paper, we study both geometric and algebraic properties including
irreducibility, singularity, normality and Cohen-Macaulayness of the commuting
varieties C_r(\mathfrak{gl}_2), C_r(\fraksl_2) and where is
the nilpotent cone of \fraksl_2. Our calculations lead us to state a
conjecture on Cohen-Macaulayness for commuting varieties of -tuples.
Furthermore, in the case when \g=\fraksl_2, we obtain interesting results
about commuting varieties when adding more restrictions into each tuple. In the
case of \fraksl_3, we are able to verify the aforementioned properties for
C_r(\fraku). Finally, applying our calculations on the commuting variety
C_r(\overline{\calO_{\sub}}) where \overline{\calO_{\sub}} is the closure
of the subregular orbit in \fraksl_3, we prove that the nilpotent commuting
variety has singularities of codimension .Comment: To appear in Journal of Pure and Applied Algebr
Tetrahedra of flags, volume and homology of SL(3)
In the paper we define a "volume" for simplicial complexes of flag
tetrahedra. This generalizes and unifies the classical volume of hyperbolic
manifolds and the volume of CR tetrahedra complexes. We describe when this
volume belongs to the Bloch group. In doing so, we recover and generalize
results of Neumann-Zagier, Neumann, and Kabaya. Our approach is very related to
the work of Fock and Goncharov.Comment: 45 pages, 14 figures. The first version of the paper contained a
mistake which is correct here. Hopefully the relation between the works of
Neumann-Zagier on one side and Fock-Goncharov on the other side is now much
cleare
Locally symmetric spaces and K-theory of number fields
For a closed locally symmetric space M=\Gamma\G/K and a representation of G
we consider the push-forward of the fundamental class in the homology of the
linear group and a related invariant in algebraic K-theory. We discuss the
nontriviality of this invariant and we generalize the construction to cusped
locally symmetric spaces of R-rank one.Comment: 48 pages, appears in AG
- …
