137 research outputs found

    Hot prominence detected in the core of a Coronal Mass Ejection: III. Plasma filling factor from UVCS Lyman-α\alpha and Lyman-ÎČ\beta observations

    Get PDF
    This work deals with the study of an erupting prominence embedded in the core of a CME and focuses on the derivation of the prominence plasma filling factor. We explore two methods to measure the prominence plasma filling factor that are based on the combination of visible-light and ultraviolet spectroscopic observations. Theoretical relationships for resonant scattering and collisional excitation are used to evaluate the intensity of the H I Lyman-{\alpha} and Lyman-{\beta} lines, in two prominence points where simultaneous and cospatial LASCO-C2 and UVCS data were available. Thermodynamic and geometrical parameters assumed for the calculation are provided by both observations and the results of a detailed 1D non-LTE radiative-transfer model of the prominence, developed in our previous work (Heinzel 2016). The filling factor is derived from the comparison between the calculated and the measured intensities of the two lines. The results are then checked against the non-LTE model in order to verify the reliability of the methods. The resulting filling factors are consistent with the model in both the prominence points when the separation of the radiative and collisional components of the total intensity, required to estimate the filling factor, is performed using both the line intensities. An exploration of the parameter space shows that the results are weakly sensitive to the plasma velocity, but they depends more strongly on the assumed kinetic temperatures. The combination of visible-light and ultraviolet Lyman-{\alpha} and Lyman-{\beta} data can be used to approximately estimate the geometrical filling factor in erupting prominences, but the proposed techniques are reliable only for emission that is optically thin in the lines considered, condition that is not in general representative of prominence plasma

    Kinematics of a compression front associated with a Coronal Mass Ejection

    Get PDF
    On 2014 November 1st a solar prominence eruption associated with a C2.7 class ïŹ‚are and a type II radio burst resulted in a fast partial halo Coronal Mass Ejection (CME). Images acquired in the extreme UV (EUV) by SDO/AIA and PROBA-2/SWAP, and in white light (WL) by SOHO/LASCO show a bright compression front expanding ahead of the CME. The main goal of this work was to infer the location and timing of the shock formation in the corona. A comparison between the starting frequency of the type II emission and the frequencies derived from the inferred coronal density distribution, allowed us to identify a region located northward of the CME as the most probable site for shock formation

    Detection of Solar Coronal Mass Ejections from Raw Images with Deep Convolutional Neural Networks

    Get PDF
    Coronal Mass Ejections (CMEs) are massive releases of plasma from the solar corona. When the charged material is ejected towards the Earth, it can cause geomagnetic storms and severely damage electronic equipment and power grids. Early detection of CMEs is therefore crucial for damage containment. In this paper, we study detection of CMEs from sequential images of the solar corona acquired by a satellite. A low-complexity deep neural network is trained to process the raw images, ideally directly on the satellite, in order to provide early alerts

    Signatures of impulsive localized heating in the temperature distribution of multi-stranded coronal loops

    Full text link
    We study the signatures of different coronal heating regimes on the differential emission measure (DEM) of multi-stranded coronal loops by means of hydrodynamic simulations. We consider heating either uniformly distributed along the loops or localized close to the chromospheric footpoints, in both steady and impulsive conditions. Our simulations show that condensation at the top of the loop forms when the localized heating is impulsive with a pulse cadence time shorter than the plasma cooling time, and the pulse energy is below a certain threshold. A condensation does not produce observable signatures in the global DEM structure. Conversely, the DEM coronal peak is found sensitive to the pulse cadence time. Our simulations can also give an explanation of the warm overdense and hot underdense loops observed by TRACE, SOHO and Yohkoh. However, they are unable to reproduce both the transition region and the coronal DEM structure with a unique set of parameters, which outlines the need for a more realistic description of the transition region.Comment: 31 pages, 7 figure

    Comparing extrapolations of the coronal magnetic field structure at 2.5 solar radii with multi-viewpoint coronagraphic observations

    Get PDF
    The magnetic field shapes the structure of the solar corona but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (as streamers, plumes, coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify if this comparison can be a fast method to check systematically the reliability of the many methods available to reconstruct the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements typically in a region close to the central meridian on the solar disk and then compared with coronagraphic images at the limbs, acquired at least 7 days before or after to account for solar rotation, implicitly assuming that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) observing the Sun from different viewing angles to build Carrington maps covering the entire corona to reduce the effect of temporal evolution to ~ 5 days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations, to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to discriminate between different magnetic field extrapolations.Comment: Accepted by A&A the 20th of May, 201

    AntarctiCor: Solar Coronagraph in Antarctica for the ESCAPE Project

    Get PDF
    The Antarctica solar coronagraph –AntarctiCor– for the “Extreme Solar Coronagraphy Antarctic Program Experiment” –ESCAPE– comprises an internally-occulted coronagraph based on the externally-occulted ASPIICS coronagraph for the ESA formation-ïŹ‚ying PROBA-3 mission. This paper describes the AntarctiCor design for ground-based observations from the DomeC Antarctica plateau of the polarized broad-band (591 nm ± 5 nm) K-corona and of the narrowband (FWHM = 0.5 nm), polarized emission of the coronal green-line at 530.3 nm. The science goal of these observations is to map the topology and dynamics of the coronal magnetic ïŹeld, addressing coronal heating and space weather questions

    The Heliospheric Space Weather Center: A novel space weather service

    Get PDF
    The Heliospheric Space Weather Center project is the result of the synergy between the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.) and the INAF-Astrophysical Observatory of Torino, both located in Turin, Italy. The main goal of this project is to provide space weather medium and short-term forecast, by combining remote-sensing and in situ open data with novel data analysis technologies, giving to scientists the possibility of designing, implementing, and validating space-weather algorithms using extensive data sets

    Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    Full text link
    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high temperature active region loops close to equilibrium. In this paper, we couple observations of Active Region 10955 made with XRT and EIS on \textit{Hinode} to test a simple steady heating model. First we calculate the differential emission measure of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3\,MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 << Log T << 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.Comment: 16 pages, 9 figures, accepted to Ap

    Decomposing the misery index: A dynamic approach

    Get PDF
    YesThe misery index (the unweighted sum of unemployment and inflation rates) was probably the first attempt to develop a single statistic to measure the level of a population’s economic malaise. In this letter, we develop a dynamic approach to decompose the misery index using two basic relations of modern macroeconomics: the expectations-augmented Phillips curve and Okun’s law. Our reformulation of the misery index is closer in spirit to Okun’s idea. However, we are able to offer an improved version of the index, mainly based on output and unemployment. Specifically, this new Okun’s index measures the level of economic discomfort as a function of three key factors: (1) the misery index in the previous period; (2) the output gap in growth rate terms; and (3) cyclical unemployment. This dynamic approach differs substantially from the standard one utilised to develop the misery index, and allow us to obtain an index with five main interesting features: (1) it focuses on output, unemployment and inflation; (2) it considers only objective variables; (3) it allows a distinction between short-run and long-run phenomena; (4) it places more importance on output and unemployment rather than inflation; and (5) it weights recessions more than expansions
    • 

    corecore