7 research outputs found

    Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors

    No full text
    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization

    CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties

    No full text
    Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase. The iminosugar pseudo-disaccharides showed no inhibitory activity against almond β-glucosidase, while the parent N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol likewise proved to be inactive against yeast α-glucosidase. Inhibitory activity could be reinstated in the former series by appropriate substitution on nitrogen. The greater activity of the piperidine could be rationalized based on docking studies. Further, potent inhibition of β-amylase was observed with compounds from both the piperidine and azepane series

    Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer's disease

    No full text
    34 p.-9 fig.-1 tab.-1 graph. abst.Acetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors. The most promising compounds (9 and 11) were not cytotoxic and their kinetic study accounted for dual binding site mode of interaction, which is in agreement with further docking and molecular dynamics studies. Therefore, this study demonstrates how our strategy enabled the discovery of novel promising and privileged structures. Remarkably, compound 11 proved to be one of the most potent (0.17 nM) and selective (>58,000-fold) hBuChE inhibitor ever reported.This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (grant 2012/14114-5, 2013/50788-3, 2014/04868-8), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Consejo Superior de Investigaciones Científicas – CSIC (grant i-Link0801) and MINECO (CTQ2015-66313-R).Peer reviewe

    Potential Triazole-based Molecules for the Treatment of Neglected Diseases

    No full text
    corecore