23 research outputs found

    Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Objectives: To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS). // Methods: The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospectively by four uro-radiologists with 5–16 years’ experience. T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong’s test. // Results: The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months. PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity (92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43, and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value range 0.34–0.77). // Conclusions: PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in AS patients

    Using a Recurrent Neural Network To Inform the Use of Prostate-specific Antigen (PSA) and PSA Density for Dynamic Monitoring of the Risk of Prostate Cancer Progression on Active Surveillance

    Get PDF
    The global uptake of prostate cancer (PCa) active surveillance (AS) is steadily increasing. While prostate-specific antigen density (PSAD) is an important baseline predictor of PCa progression on AS, there is a scarcity of recommendations on its use in follow-up. In particular, the best way of measuring PSAD is unclear. One approach would be to use the baseline gland volume (BGV) as a denominator in all calculations throughout AS (nonadaptive PSAD, PSADNA), while another would be to remeasure gland volume at each new magnetic resonance imaging scan (adaptive PSAD, PSADA). In addition, little is known about the predictive value of serial PSAD in comparison to PSA. We applied a long short-term memory recurrent neural network to an AS cohort of 332 patients and found that serial PSADNA significantly outperformed both PSADA and PSA for follow-up prediction of PCa progression because of its high sensitivity. Importantly, while PSADNA was superior in patients with smaller glands (BGV ≤55 ml), serial PSA was better in men with larger prostates of >55 ml. Patient summary: Repeat measurements of prostate-specific antigen (PSA) and PSA density (PSAD) are the mainstay of active surveillance in prostate cancer. Our study suggests that in patients with a prostate gland of 55 ml or smaller, PSAD measurements are a better predictor of tumour progression, whereas men with a larger gland may benefit more from PSA monitoring

    Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation

    Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Abstract: Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. Key Points: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research

    MRI features of the normal prostatic peripheral zone: the relationship between age and signal heterogeneity on T2WI, DWI, and DCE sequences

    Get PDF
    Funder: University of CambridgeAbstract: Objectives: To assess the multiparametric MRI (mpMRI) appearances of normal peripheral zone (PZ) across age groups in a biopsy-naïve population, where prostate cancer (PCa) was subsequently excluded, and propose a scoring system for background PZ changes. Methods: This retrospective study included 175 consecutive biopsy-naïve patients (40–74 years) referred with a suspicion of PCa, but with subsequent negative investigations. Patients were grouped by age into categories ≤ 54, 55–59, 60–64, and ≥ 65 years. MpMRI sequences (T2-weighted imaging [T2WI], diffusion-weighted imaging [DWI]/apparent diffusion coefficient [ADC], and dynamic contrast-enhanced imaging [DCE]) were independently evaluated by two uro-radiologists on a proposed 4-point grading scale for background change on each sequence, wherein score 1 mirrored PIRADS-1 change and score 4 represented diffuse background change. Peripheral zone T2WI signal intensity and ADC values were also analyzed for trends relating to age. Results: There was a negative correlation between age and assigned background PZ scores for each mpMRI sequence: T2WI: r = − 0.52, DWI: r = − 0.49, DCE: r = − 0.45, p < 0.001. Patients aged ≤ 54 years had mean scores of 3.0 (T2WI), 2.7 (DWI), and 3.1 (DCE), whilst patients ≥ 65 years had significantly lower mean scores of 1.7, 1.4, and 1.9, respectively. There was moderate inter-reader agreement for all scores (range κ = 0.43–0.58). Statistically significant positive correlations were found for age versus normalized T2WI signal intensity (r = 0.2, p = 0.009) and age versus ADC values (r = 0.33, p = 0.001). Conclusion: The normal PZ in younger patients (≤ 54 years) demonstrates significantly lower T2WI signal intensity, lower ADC values, and diffuse enhancement on DCE, which may hinder diagnostic interpretation in these patients. The proposed standardized PZ background scoring system may help convey the potential for diagnostic uncertainty to clinicians. Key Points: • Significant, positive correlations were found between increasing age and higher normalized T2-weighted signal intensity and mean ADC values of the prostatic peripheral zone. • Younger men exhibit lower T2-weighted imaging signal intensity, lower ADC values, and diffuse enhancement on dynamic contrast-enhanced imaging, which may hinder MRI interpretation. • A scoring system is proposed which aims towards a standardized assessment of the normal background PZ. This may help convey the potential for diagnostic uncertainty to clinicians

    Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: a proof-of-concept study

    No full text
    This is the original data file linked to the manuscript entitled "Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: a proof-of-concept study" submitted to PLOS ONE

    The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T1 relaxometry in patients with prostate cancer

    No full text
    These data represent the original dataset of the manuscript entitled "The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T1 relaxometry in patients with prostate cancer" (accepted for publication on 3 November 2020 by Scientific Reports, DOI to be provided)

    Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: a proof-of-concept study

    No full text
    This is the original data file linked to the manuscript entitled "Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: a proof-of-concept study" submitted to PLOS ONE

    Imaging tumor lactate is feasible for identifying intermediate-risk prostate cancer patients with post-surgical biochemical recurrence

    No full text
    This is a supporting dataset for the manuscript &apos;Imaging tumor lactate is feasible for identifying intermediate-risk prostate cancer patients with post-surgical biochemical recurrence&apos; (10.1073/pnas.2312261120).THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore