87 research outputs found

    Assessing smart locations – the MORECO project

    Get PDF
    A main criterion of intelligent and smart locations is the fact that they support a resource-saving way of life of the residents. Beside other aspects, the mobility of the residents is a very big part of this lifestyle. In big agglomerations the level of motorization is already decreasing, but in rural regions there is often a lack of public transport options which can be used from the inhabitants instead of their own car. The European co-funded Alpine Space project “MORECO Mobility and residential costs” aims to improve sustainable mobility and to foster better accessibilities by supporting an optimized polycentric settlement development. The mainly addressed target groups are private households, planners, and mobility actors as well as politicians and decision makers. To fit all different needs, special tools were arranged and developed for each target group during the MORECO project. These provided tools within the MORECO tool kit are generally possible to be used in every region or municipality to be a part of an overall and strategic mobility management. The adaption level of the tools can be fitted to all local framework conditions as far as the necessary data is available. In regions where the mobility behavior is mainly car-oriented the tools can be helpful and motivating to improve sustainable mobility offers, especially because there is mostly no possibility to stop directly future urban sprawl according to law. The practical results out of the project can be an incentive for other European regions and municipalities which also prioritize an improvement in the field of sustainable mobility

    Control of Signaling in a MAP-kinase Pathway by an RNA-Binding Protein

    Get PDF
    Signaling-protein mRNAs tend to have long untranslated regions (UTRs) containing binding sites for RNA-binding proteins regulating gene expression. Here we show that a PUF-family RNA-binding protein, Mpt5, represses the yeast MAP-kinase pathway controlling differentiation to the filamentous form. Mpt5 represses the protein levels of two pathway components, the Ste7 MAP-kinase kinase and the Tec1 transcriptional activator, and negatively regulates the kinase activity of the Kss1 MAP kinase. Moreover, Mpt5 specifically inhibits the output of the pathway in the absence of stimuli, and thereby prevents inappropriate cell differentiation. The results provide an example of what may be a genome-scale level of regulation at the interface of signaling networks and protein-RNA binding networks

    Vorwort

    Get PDF

    Prediction of phenotype and gene expression for combinations of mutations

    Get PDF
    Molecular interactions provide paths for information flows. Genetic interactions reveal active information flows and reflect their functional consequences. We integrated these complementary data types to model the transcription network controlling cell differentiation in yeast. Genetic interactions were inferred from linear decomposition of gene expression data and were used to direct the construction of a molecular interaction network mediating these genetic effects. This network included both known and novel regulatory influences, and predicted genetic interactions. For corresponding combinations of mutations, the network model predicted quantitative gene expression profiles and precise phenotypic effects. Multiple predictions were tested and verified

    Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in αβ and γδ T Cells

    Get PDF
    Differentiation of T helper 17 cells (Th17) is a multistep process that involves the cytokines IL-6, TGF-β, and IL-23 as well as IL-1β, IL-21, and TNF-α. Thereby, robust induction of the capacity to produce IL-17 involves epigenetic modifications of the syntenic Il17a/f locus. Using inbred mouse strains, we identified co-regulation of gene transcription at the Il17a/f locus with the nearby microRNAs miR-133b and miR-206 that are clustered approximately 45 kb upstream of Il17a/f. Expression of these microRNAs was specific for Th17 as compared to other CD4+ T cell subsets and this was equally valid for in vitro polarized and ex vivo derived cells. From all factors analyzed, IL-23 was the most important cytokine for the in vitro induction of miR-133b and miR-206 in naive CD4+ T cells of wild type mice. However, analysis of IL-23R deficient mice revealed that IL-23R signaling was not essential for the induction of miR-133b and miR-206. Importantly, we found a similar co-regulation in CCR6+ and other γδ T cell subsets that are predisposed to production of IL-17. Taken together, we discovered a novel feature of T cell differentiation towards an IL-17-producing phenotype that is shared between αβ and γδ T cells. Notably, the specific co-regulation of miR-133b and miR-206 with the Il17a/f locus also extended to human Th17 cells. This qualifies expression of miR-133b and miR-206 in T cells as novel biomarkers for Th17-type immune reactions

    Intense Synaptic Activity Enhances Temporal Resolution in Spinal Motoneurons

    Get PDF
    In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements
    corecore