21 research outputs found

    Final results regarding the addition of dendritic cell vaccines to neoadjuvant chemotherapy in early HER2-negative breast cancer patients: clinical and translational analysis

    Get PDF
    Background: Primary breast cancer (BC) has shown a higher immune infiltration than the metastatic disease, justifying the optimal scenario for immunotherapy. Recently, neoadjuvant chemotherapy (NAC) combined with immune checkpoint inhibitors has demonstrated a gain in pathological complete responses (tpCR) in patients with BC. The aim of our study is to evaluate the safety, feasibility, and efficacy of the addition of dendritic cell vaccines (DCV) to NAC in HER2-negative BC patients. Methods: Thirty-nine patients with early BC received DCV together with NAC conforming the vaccinated group (VG) and compared with 44 patients as the control group (CG). All patients received anthracyclines and taxanes-based NAC (ddECx4→Dx4) followed by surgery ± radiotherapy ± hormonotherapy. Results: The tpCR rate was 28.9% in the VG and 9.09% in the CG (p=0.03). Pathological CR in the triple negative (TN) BC were 50.0% versus 30.7% (p=0.25), 16.6% versus 0% in luminal B (p=0.15), and none among luminal A patients in VG versus CG, respectively. Impact of DCV was significantly higher in the programmed cell death ligand 1 (PD-L1) negative population (p<0.001). PD-L1 expression was increased in patients with residual disease in the VG as compared with the CG (p<0.01). No grade ⩾3 vaccine-related adverse events occurred. With a median follow-up of 8years, no changes were seen in event-free survival or overall survival. Phenotypic changes post DCV in peripheral blood were observed in myeloid-derived suppressor cells (MDSC), NK, and T cells. Increase in blood cell proliferation and interferon (IFN)-γ production was detected in 69% and 74% in the VG, respectively. Humoral response was also found. Clonality changes in TCR-β repertoire were detected in 67% of the patients with a drop in diversity index after treatment. Conclusion: The combination of DCV plus NAC is safe and increases tpCR, with a significant benefit among PD-L1-negative tumors. DCV modify tumor milieu and perform cellular and humoral responses in peripheral blood with no impact in outcome. Trial registration: ClinicalTrials.gov number: NCT01431196. EudraCT 2009-017402-36

    Final results regarding the addition of dendritic cell vaccines to neoadjuvant chemotherapy in early HER2-negative breast cancer patients: clinical and translational analysis

    Get PDF
    Background: Primary breast cancer (BC) has shown a higher immune infiltration than the metastatic disease, justifying the optimal scenario for immunotherapy. Recently, neoadjuvant chemotherapy (NAC) combined with immune checkpoint inhibitors has demonstrated a gain in pathological complete responses (tpCR) in patients with BC. The aim of our study is to evaluate the safety, feasibility, and efficacy of the addition of dendritic cell vaccines (DCV) to NAC in HER2-negative BC patients. Methods: Thirty-nine patients with early BC received DCV together with NAC conforming the vaccinated group (VG) and compared with 44 patients as the control group (CG). All patients received anthracyclines and taxanes-based NAC (ddECx4→Dx4) followed by surgery ± radiotherapy ± hormonotherapy. Results: The tpCR rate was 28.9% in the VG and 9.09% in the CG (p = 0.03). Pathological CR in the triple negative (TN) BC were 50.0% versus 30.7% (p = 0.25), 16.6% versus 0% in luminal B (p = 0.15), and none among luminal A patients in VG versus CG, respectively. Impact of DCV was significantly higher in the programmed cell death ligand 1 (PD-L1) negative population (p < 0.001). PD-L1 expression was increased in patients with residual disease in the VG as compared with the CG (p < 0.01). No grade ⩾3 vaccine-related adverse events occurred. With a median follow-up of 8 years, no changes were seen in event-free survival or overall survival. Phenotypic changes post DCV in peripheral blood were observed in myeloid-derived suppressor cells (MDSC), NK, and T cells. Increase in blood cell proliferation and interferon (IFN)-γ production was detected in 69% and 74% in the VG, respectively. Humoral response was also found. Clonality changes in TCR-β repertoire were detected in 67% of the patients with a drop in diversity index after treatment. Conclusion: The combination of DCV plus NAC is safe and increases tpCR, with a significant benefit among PD-L1-negative tumors. DCV modify tumor milieu and perform cellular and humoral responses in peripheral blood with no impact in outcome

    Preclinical development of a humanized chimeric antigen receptor against B cell maturation antigen for multiple myeloma

    Get PDF
    Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in the treatment of patients with relapsed or refractory hematological B cell malignancies. In the recent years, B-cell maturation antigen (BCMA) has appeared as a promising antigen to target using a variety of immuno-therapy treatments including CART cells, for MM patients. To this end, we generated clinical-grade murine CART cells directed against BCMA, named ARI2m cells. Having demonstrated its efficacy, and in an attempt to avoid the immune rejection of CART cells by the patient, the single chain variable fragment was humanized, creating ARI2h cells. ARI2h cells demonstrated comparable in vitro and in vivo efficacy to ARI2m cells, and superiority in cases of high tumor burden disease. In terms of inflammatory response, ARI2h cells showed a lower TNFα production and lower in vivo toxicity profile. Large-scale expansion of both ARI2m and ARI2h cells was efficiently conducted following Good Manufacturing Practice guidelines, obtaining the target CART cell dose required for treatment of multiple myeloma patients. Moreover, we demonstrate that soluble BCMA and BCMA released in vesicles impacts on CAR-BCMA activity. In summary, this study sets the bases for the implementation of a clinical trial (EudraCT code: 2019-001472-11) to study the efficacy of ARI2h cell treatment for multiple myeloma patients

    Clinical Study Clinical Safety and Immunogenicity of Tumor-Targeted, Plant-Made Id-KLH Conjugate Vaccines for Follicular Lymphoma

    Get PDF
    We report the first evaluation of plant-made conjugate vaccines for targeted treatment of B-cell follicular lymphoma (FL) in a Phase I safety and immunogenicity clinical study. Each recombinant personalized immunogen consisted of a tumor-derived, plantproduced idiotypic antibody (Ab) hybrid comprising the hypervariable regions of the tumor-associated light and heavy Ab chains, genetically grafted onto a common human IgG1 scaffold. Each immunogen was produced in Nicotiana benthamiana plants using twin magnICON vectors expressing the light and heavy chains of the idiotypic Ab. Each purified Ab was chemically linked to the carrier protein keyhole limpet hemocyanin (KLH) to form a conjugate vaccine. The vaccines were administered to FL patients over a series of ≥6 subcutaneous injections in conjunction with the adjuvant Leukine (GM-CSF). The 27 patients enrolled in the study had previously received non-anti-CD20 cytoreductive therapy followed by ≥4 months of immune recovery prior to first vaccination. Of 11 patients who became evaluable at study conclusion, 82% (9/11) displayed a vaccine-induced, idiotype-specific cellular and/or humoral immune response. No patients showed serious adverse events (SAE) related to vaccination. The fully scalable plant-based manufacturing process yields safe and immunogenic personalized FL vaccines that can be produced within weeks of obtaining patient biopsies

    CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome

    Full text link
    Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response

    Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development

    Get PDF
    Producción CientíficaBackground: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. Methods: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. Results: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. Conclusions: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.Asociación Española Contra el Cáncer (Proyecto AIOA110296BLAN).Gerencia Regional de Salud de Castilla y León (Proyecto GRS 726/A13

    Dendritic Cells in Cancer Immunology and Immunotherapy

    No full text
    Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy
    corecore