106 research outputs found

    ADHD, Lead, and PCBs: Eubig et al. Respond

    Get PDF

    Developmental Exposure to PCBs, MeHg, or Both: Long-Term Effects on Auditory Function

    Get PDF
    Background: Developmental exposure to polychlorinated biphenyls (PCBs) or methylmercury (MeHg) can result in a variety of neurotoxic effects, including long-term auditory deficits. However, little is known about the effects of combined exposure to PCBs and MeHg on auditory function. Objective: We developmentally exposed rats to PCBs and/or MeHg and assessed auditory function in adulthood to determine the effects of exposure to these contaminants individually and in combination. Methods: We exposed female Long-Evans rats to 1 or 3 mg/kg PCB in corn oil, 1.5 or 4.5 ppm MeHg in drinking water, or combined exposure to 1 mg/ kg PCB + 1.5 ppm MeHg or 3 mg/kg PCB + 4.5 ppm MeHg. Controls received corn oil vehicle and unadulterated water. Dosing began 28 days before breeding and continued until weaning at postnatal day (PND) 21. Auditory function of the offspring was assessed at approximately PND 200 by measuring distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs). Results: Groups exposed to PCBs alone had attenuated DPOAEs amplitudes, elevated DPOAE thresholds, and elevated ABR thresholds compared with controls. Groups exposed to MeHg alone did not differ from controls. Unexpectedly, the effects of PCB exposure appeared to be attenuated by coexposure to MeHg. Conclusions: Developmental exposure to PCBs can result in permanent hearing deficits, and the change in DPOAE amplitudes and threshold suggest a cochlear site of action. Coexposure to MeHg appeared to attenuate the PCB-related deficits, but the mechanism for this unexpected interaction remains to be determined

    Risks and Benefits of Consumption of Great Lakes Fish

    Get PDF
    Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption

    Principles and Practices of Neurodevelopmental Assessment in Children: Lessons Learned from the Centers for Children’s Environmental Health and Disease Prevention Research

    Get PDF
    Principles and practices of pediatric neurotoxicology are reviewed here with the purpose of guiding the design and execution of the planned National Children’s Study. The developing human central nervous system is the target organ most vulnerable to environmental chemicals. An investigation of the effects of environmental exposures on child development is a complex endeavor that requires consideration of numerous critical factors pertinent to a study’s concept, design, and execution. These include the timing of neurodevelopmental assessment, matters of biologic plausibility, site, child and population factors, data quality assurance and control, the selection of appropriate domains and measures of neurobehavior, and data safety and monitoring. Here we summarize instruments for the assessment of the neonate, infant, and child that are being employed in the Centers for Children’s Environmental Health and Disease Prevention Research, sponsored by the National Institute of Environmental Health Sciences and the U.S. Environmental Protection Agency, discuss neural and neurobiologic measures of development, and consider the promises of gene–environment studies. The vulnerability of the human central nervous system to environmental chemicals has been well established, but the contribution these exposures may make to problems such as attention deficit disorder, conduct problems, pervasive developmental disorder, or autism spectrum disorder remain uncertain. Large-scale studies such as the National Children’s Study may provide some important clues. The human neurodevelopmental phenotype will be most clearly represented in models that include environmental chemical exposures, the social milieu, and complex human genetic characteristics that we are just beginning to understand

    Parasite Zoonoses and Wildlife: Emerging Issues

    Get PDF
    The role of wildlife as important sources, reservoirs and amplifiers of emerging human and domestic livestock pathogens, in addition to well recognized zoonoses of public health significance, has gained considerable attention in recent years. However, there has been little attention given to the transmission and impacts of pathogens of human origin, particularly protozoan, helminth and arthropod parasites, on wildlife. Substantial advances in molecular technologies are greatly improving our ability to follow parasite flow among host species and populations and revealing valuable insights about the interactions between cycles of transmission. Here we present several case studies of parasite emergence, or risk of emergence, in wildlife, as a result of contact with humans or anthropogenic activities. For some of these parasites, there is growing evidence of the serious consequences of infection on wildlife survival, whereas for others, there is a paucity of information about their impact
    corecore