67 research outputs found

    Egulating gene expression through RNA nuclear retention

    Get PDF
    Multiple mechanisms have evolved to regulate the eukaryotic genome. We have identified CTN-RNA, a mouse tissue-specific w8 kb nuclear-retained poly(A) + RNA that regulates the level of its protein-coding partner. CTN-RNA is transcribed from the protein-coding mouse cationic amino acid transporter 2 (mCAT2) gene through alternative promoter and poly(A) site usage. CTN-RNA is diffusely distributed in nuclei and is also localized to paraspeckles. The 3�UTR of CTN-RNA contains elements for adenosine-to-inosine editing, involved in its nuclear retention. Interestingly, knockdown of CTN-RNA also downregulates mCAT2 mRNA. Under stress, CTN-RNA is posttranscriptionally cleaved to produce protein-coding mCAT2 mRNA. Our findings reveal a role of the cell nucleus in harboring RNA molecules that are not immediately needed to produce proteins but whose cytoplasmic presence is rapidly required upon physiologic stress. This mechanism of action highlights an important paradigm for the role of a nuclear-retained stable RNA transcript in regulating gene expression

    Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin

    Get PDF
    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo

    Second Generation of Antisense Oligonucleotides: From Nuclease Resistance to Biological Efficacy in Animals

    Get PDF
    From efforts to improve the biophysical properties of antisense oligonucleotides by incorporating backbone- or sugar-modified nucleoside analogs, 2'-O-methoxyethyl ribonucleosides 8b were identified as building blocks for a second generation of antisense oligonucleotides. Compounds containing these modifications were demonstrated to combine the benefit of a high binding affinity to the RNA complement with a large increase in nuclease resistance, allowing the use of regular phosphodiester linkages. Chimeric oligonucleotides with 2'-O-methoxyethyl ribonucleosides, 8b, in the wings and a central DNA-phosphorothioate window were shown to efficiently downregulate C-'raf' kinase and PKC-α messenger-RNA in tumor cell lines resulting in a profound inhibition of cell proliferation. The same compounds were able to effectively reduce the growth of tumors in animal models at low concentrations indicating the potential utility of these second generation antisense oligonucleotides for therapeutic applications

    Potent inhibition of microRNA in vivo without degradation

    Get PDF
    Chemically modified antisense oligonucleotides (ASOs) are widely used as a tool to functionalize microRNAs (miRNAs). Reduction of miRNA level after ASO inhibition is commonly reported to show efficacy. Whether this is the most relevant endpoint for measuring miRNA inhibition has not been adequately addressed in the field although it has important implications for evaluating miRNA targeting studies. Using a novel approach to quantitate miRNA levels in the presence of excess ASO, we have discovered that the outcome of miRNA inhibition can vary depending on the chemical modification of the ASO. Although some miRNA inhibitors cause a decrease in mature miRNA levels, we have identified a novel 2′-fluoro/2′-methoxyethyl modified ASO motif with dramatically improved in vivo potency which does not. These studies show there are multiple mechanisms of miRNA inhibition by ASOs and that evaluation of secondary endpoints is crucial for interpreting miRNA inhibition studies
    corecore