27 research outputs found

    Sympathetic neuroblasts undergo a developmental switch in trophic dependence

    Get PDF
    Sympathetic neurons require NGF for survival, but it is not known when these cells first become dependent on neurotrophic factors. We have examined in vitro mitotically active sympathetic neuroblasts immuno-isolated from different embryonic stages, and have correlated this functional data with the expression of neurotrophin receptor mRNAs in vivo. Cells from E14.5 ganglia are supported by neurotrophin-3 (NT-3) in a serum-free medium, but not by NGF; NT-3 acts as a bona fide survival factor for these cells and not simply as a mitogen. By birth, sympathetic neurons are well-supported by NGF, whereas NT-3 supports survival only weakly and at very high doses. This change in neurotrophin-responsiveness is correlated with a reciprocal switch in the expression of trkC and trkA mRNAs by sympathetic neuroblasts in vivo. These data suggest that neurotrophic factors may control neuronal number at earlier stages of development than previously anticipated. They also suggest that the acquisition of NGF-dependence may occur, at least in part, through the loss of receptors for these interim survival factors

    Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning

    Get PDF
    Acute inhibition of acetylcholine (ACh) has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA). The most adhered-to theory that has emerged as a result of this work – that ACh increases a taste’s perceived novelty, and thereby its associability – would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in sub-regions of the basal forebrain (BF). We first demonstrate that the p75−/− abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC) using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyper-innervation of GC in the mutant mice – hyper-innervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75−/− and wild-type (WT) mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75−/− mice do in fact learn stronger CTAs than WT mice. These data provide novel evidence for the hypothesis linking ACh and taste learning

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A v-myc-Immortalized Sympathoadrenal Progenitor Cell Line in Which Neuronal Differentiation Is Initiated by FGF but Not NGF

    No full text
    Sympathetic neurons differentiate from a developmentally restricted progenitor cell in the neural crest-derived sympathoadrenal lineage. We have isolated these progenitors by fluorescence-activated cell sorting and immortalized them using a v-myc-containing retrovirus. The complement of antigenic markers expressed by these lines suggests that they have retained many of the properties of their normal counterparts.These lines initiate neuronal differentiation in response to basic FGF, but not to NGF, and do not contain NGF receptor mRNA. In NGF plus FGF, however, a small percentage of the cells differentiate to NGF-dependent postmitotic neurons. Furthermore, an induction of NGF receptor mRNA can be observed in response to FGF Thus, the development of sympathetic neurons may involve a relay, in which FGF both initiates differentiation and induces the NGF receptor, which in turn controls further maturation and survival

    Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors

    No full text
    In vertebrates, the peripheral nervous system is embryologically derived from the neural crest. Although the earliest neural crest cells seem to be multipotent, the molecular mechanisms responsible for the restriction of these cells to different sublineages are not understood. We therefore searched for developmental control genes expressed in crest cells or their derivatives. One important class of regulatory molecules comprises proteins with common DNA-binding and dimerization domains, the basic helix–loop–helix (B-HLH) region. Members of this family include MyoD (ref. 6), a mammalian myogenic determination molecule, and proteins encoded by genes of the achaete-scute complex of Drosophila, which have an important role in neuronal determination. From a sympathetic neuronal precursor cell line derived from the neural crest we have now isolated two different mammalian genes that are homologous to genes of the achaete-scute complex. The sequence of the B-HLH-encoding region of these genes is more similar to that of the genes of the achaete-scute complex than it is to that of other, mammalian members of the B-HLH family. At least one of these genes is transiently expressed in the embryonic rat nervous system, is not detected in non-neuronal tissues or cell lines, and is induced by nerve growth factor in PC 12 cells

    Membrane depolarization induces p140^(trk) and NGF responsiveness, but not p75^(LNGFR), in MAH cells

    No full text
    Nerve growth factor (NGF) is required for the maturation and survival of sympathetic neurons, but the mechanisms controlling expression of the NGF receptor in developing neuroblasts have not been defined. MAH cells, an immortalized sympathoadrenal progenitor cell line, did not respond to NGF and expressed neither low-affinity NGF receptor (p75) nor p140trk messenger RNAs. Depolarizing concentrations of potassium chloride, but none of a variety of growth factors, induced expression of p140trk but not p75 messenger RNA. A functional response to NGF was acquired by MAH cells under these conditions, suggesting that expression of p75 is not essential for this response. Depolarization also permitted a relatively high proportion of MAH cells to develop and survive as neurons in fibroblast growth factor and NGF. These data establish a relation between electrical activity and neurotrophic factor responsiveness in developing neurons, which may operate in the functioning of the mature nervous system as well
    corecore