42 research outputs found

    The Rho Pathway Mediates Transition to an Alveolar Type I Cell Phenotype During Static Stretch of Alveolar Type II Cells

    Get PDF
    Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over or underdistended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase inhibitor Y27632 decreased Rho A activation and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation

    Single-Cell Transcriptomic Profiling of Pluripotent Stem Cell-Derived SCGB3A2+ Airway Epithelium.

    Get PDF
    Lung epithelial lineages have been difficult to maintain in pure form in vitro, and lineage-specific reporters have proven invaluable for monitoring their emergence from cultured pluripotent stem cells (PSCs). However, reporter constructs for tracking proximal airway lineages generated from PSCs have not been previously available, limiting the characterization of these cells. Here, we engineer mouse and human PSC lines carrying airway secretory lineage reporters that facilitate the tracking, purification, and profiling of this lung subtype. Through bulk and single-cell-based global transcriptomic profiling, we find PSC-derived airway secretory cells are susceptible to phenotypic plasticity exemplified by the tendency to co-express both a proximal airway secretory program as well as an alveolar type 2 cell program, which can be minimized by inhibiting endogenous Wnt signaling. Our results provide global profiles of engineered lung cell fates, a guide for improving their directed differentiation, and a human model of the developing airway

    The impact of women's social position on fertility in developing countries

    Full text link
    This paper examines ideas about possible ways in which the extent of women's autonomy, women's economic dependency, and other aspects of their position vis-à-vis men influence fertility in Third World populations. Women's position or “status” seems likely to be related to the supply of children because of its links with age at marriage. Women's position may also affect the demand for children and the costs of fertility regulation, though some connections suggested in the literature are implausible. The paper ends with suggestions for future research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45660/1/11206_2005_Article_BF01124382.pd

    Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP

    No full text
    Mature alveolar type II cells that produce pulmonary surfactant are essential for adaptation to extrauterine life and prevention of infant respiratory distress syndrome. We have developed a new in vitro model to further investigate regulation of type II cell differentiation. Epithelial cells isolated from human fetal lung were cultured in serum-free medium on plastic. Cells treated with dexamethasone + cAMP analog and isobutylmethylxanthine for 4 days exhibited increased phosphatidylcholine synthesis and content of disaturated phosphatidylcholine species, manyfold increases in all surfactant proteins with processing to mature forms, and abundant lamellar bodies. DNA microarray analysis identified approximately 3,100 expressed genes, including subsets of genes induced 2- to >100-fold (approximately 2.5%) or repressed 2- to 18-fold (approximately 1.2%) by hormone treatment. Of the highly regulated genes, most were coregulated in an additive or synergistic manner by dexamethasone and cAMP agents. Approximately 90% of the regulated genes identified by this initial microarray analysis have not been previously recognized as hormone responsive. One newly identified hormone-induced gene is Nkx2.1 (thyroid transcription factor-1), which has a critical role in surfactant protein gene expression. Our findings indicate that glucocorticoid + cAMP is sufficient and necessary for precocious induction of functional type II cells in this in vitro system and that these hormones act primarily in combination to regulate expression of a subset of specific genes
    corecore