14 research outputs found

    Zinc Phthalocyanine−Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics and Photoelectrochemical Cell Preparation

    Get PDF
    Graphene exfoliation upon tip sonication in o-­‐DCB was accomplished. Then, covalent grafting of (2-­‐ aminoethoxy)(tri-­‐tert-­‐butyl) zinc phthalocyanine (ZnPc), to exfoliated graphene sheets was achieved. The newly formed ZnPc-­‐graphene hybrid material was found soluble in common organic solvents without any precipitation for several weeks. Application of diverse spectroscopic techniques verified the successful formation of ZnPc-­‐graphene hybrid materi-­‐ al, while thermogravimetric analysis revealed the amount of ZnPc loading onto graphene. Microscopy analysis based on AFM and TEM was applied to probe the morphological characteristics and to investigate the exfoliation of graphene sheets. Efficient fluorescence quenching of ZnPc in the ZnPc-­‐graphene hybrid material suggested that photoinduced events occur from the photoexcited ZnPc to exfoliated graphene. The dynamics of the photoinduced electron transfer was evaluated by femtosecond transient absorption spectroscopy, thus, revealing the formation of transient species such as ZnPc+ yielding the charge-­‐separated state ZnPc‱+–graphene‱–. Finally, the ZnPc-­‐graphene hybrid material was integrated into a photoactive electrode of an optical transparent electrode (OTE) cast with nanostructured SnO2 films (OTE/SnO2), which exhibited sta le and reproducible photocurrent responses and the incident photon-­‐to-­‐current conversion efficien-­‐ cy was determine

    Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation

    No full text
    By developing metallophthalocyanines and diimides as electron-donating and -accepting building blocks, herein, we report the construction of new electron donor–acceptor covalent organic frameworks (COFs) with periodically ordered electron donor and acceptor π-columnar arrays via direct polycondensation reactions. X-ray diffraction measurements in conjunction with structural simulations resolved that the resulting frameworks consist of metallophthalocyanine and diimide columns, which are ordered in a segregated yet bicontinuous manner to form built-in periodic π-arrays. In the frameworks, each metallophthalocyanine donor and diimide acceptor units are exactly linked and interfaced, leading to the generation of superheterojunctionsa new type of heterojunction machinery, for photoinduced electron transfer and charge separation. We show that this polycondensation method is widely applicable to various metallophthalocyanines and diimides as demonstrated by the combination of copper, nickel, and zinc phthalocyanine donors with pyrommellitic diimide, naphthalene diimide, and perylene diimide acceptors. By using time-resolved transient absorption spectroscopy and electron spin resonance, we demonstrated that the COFs enable long-lived charge separation, whereas the metal species, the class of acceptors, and the local geometry between donor and acceptor units play roles in determining the photochemical dynamics. The results provide insights into photoelectric COFs and demonstrate their enormous potential for charge separation and photoenergy conversions

    Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation

    Get PDF
    The oxygen in Earth\u2019s atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII \u2018core\u2019 complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction centre. Man-made systems are still far from replicating the complexity of PSII, as the majority of PSII mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Ru\u2013polypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru4POM). The resulting [PBI]5Ru4POM complex shows a robust amphiphilic structure and dynamic aggregation into large two-dimensional paracrystalline domains, a redshifted light-harvesting efficiency of >40% and favourable exciton accumulation, with a peak quantum efficiency using \u2018green\u2019 photons (\u3bb > 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis
    corecore