29 research outputs found

    SMN Protein Can Be Reliably Measured in Whole Blood with an Electrochemiluminescence (ECL) Immunoassay: Implications for Clinical Trials

    Get PDF
    Spinal muscular atrophy (SMA) is caused by defects in the survival motor neuron 1 (SMN1) gene that encodes survival motor neuron (SMN) protein. The majority of therapeutic approaches currently in clinical development for SMA aim to increase SMN protein expression and there is a need for sensitive methods able to quantify increases in SMN protein levels in accessible tissues. We have developed a sensitive electrochemiluminescence (ECL)-based immunoassay for measuring SMN protein in whole blood with a minimum volume requirement of 5μL. The SMN-ECL immunoassay enables accurate measurement of SMN in whole blood and other tissues. Using the assay, we measured SMN protein in whole blood from SMA patients and healthy controls and found that SMN protein levels were associated with SMN2 copy number and were greater in SMA patients with 4 copies, relative to those with 2 and 3 copies. SMN protein levels did not vary significantly in healthy individuals over a four-week period and were not affected by circadian rhythms. Almost half of the SMN protein was found in platelets. We show that SMN protein levels in C/C-allele mice, which model a mild form of SMA, were high in neonatal stage, decreased in the first few weeks after birth, and then remained stable throughout the adult stage. Importantly, SMN protein levels in the CNS correlated with SMN levels measured in whole blood of the C/C-allele mice. These findings have implications for the measurement of SMN protein induction in whole blood in response to SMN-upregulating therapy

    Bird and bat predation services in tropical forests and agroforestry landscapes

    Full text link
    Understanding distribution patterns and multitrophic interactions is critical for managing batâ and birdâ mediated ecosystem services such as the suppression of pest and nonâ pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed â forestâ agriâ habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/1/brv12211_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/2/brv12211.pd

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    Genome-Wide Knockout Screen Identifies Human Sialomucin CD164 as an Essential Entry Factor for Lymphocytic Choriomeningitis Virus.

    No full text
    Lymphocytic choriomeningitis virus (LCMV) is a well-studied mammarenavirus that can be fatal in congenital infections. However, our understanding of LCMV and its interactions with human host factors remains incomplete. Here, host determinants affecting LCMV infection were investigated through a genome-wide CRISPR knockout screen in A549 cells, a human lung adenocarcinoma line. We identified and validated a variety of novel host factors that play a functional role in LCMV infection. Among these, knockout of the sialomucin CD164, a heavily glycosylated transmembrane protein, was found to ablate infection with multiple LCMV strains but not other hemorrhagic mammarenaviruses in several cell types. Further characterization revealed a dependency of LCMV entry on the cysteine-rich domain of CD164, including an N-linked glycosylation site at residue 104 in that region. Given the documented role of LCMV with respect to transplacental human infections, CD164 expression was investigated in human placental tissue and placental cell lines. CD164 was found to be highly expressed in the cytotrophoblast cells, an initial contact site for pathogens within the placenta, and LCMV infection in placental cells was effectively blocked using a monoclonal antibody specific to the cysteine-rich domain of CD164. Together, this study identifies novel factors associated with LCMV infection of human tissues and highlights the importance of CD164, a sialomucin that previously had not been associated with viral infection. IMPORTANCE Lymphocytic choriomeningitis virus (LCMV) is a human-pathogenic mammarenavirus that can be fatal in congenital infections. Although frequently used in the study of persistent infections in the field of immunology, aspects of this virus's life cycle remain incomplete. For example, while viral entry has been shown to depend on a cell adhesion molecule, DAG1, genetic knockout of this gene allows for residual viral infection, implying that additional receptors can mediate cell entry. The significance of our study is the identification of host factors important for successful infection, including the sialomucin CD164, which had not been previously associated with viral infection. We demonstrated that CD164 is essential for LCMV entry into human cells and can serve as a possible therapeutic target for treatment of congenital infection
    corecore