9 research outputs found

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Near to Mid-infrared Spectroscopy of (65803) Didymos as Observed by JWST: Characterization Observations Supporting the Double Asteroid Redirection Test

    Get PDF
    The Didymos binary asteroid was the target of the Double Asteroid Redirection Test (DART) mission, which intentionally impacted Dimorphos, the smaller member of the binary system. We used the Near-Infrared Spectrograph and Mid-Infrared Instrument instruments on JWST to measure the 0.6–5 and 5–20 ÎŒm spectra of Didymos approximately two months after the DART impact. These observations confirm that Didymos belongs to the S asteroid class and is most consistent with LL chondrite composition, as was previously determined from its 0.6–2.5 ÎŒm reflectance spectrum. Measurements at wavelengths >2.5 ÎŒm show Didymos to have thermal properties typical for an S-complex asteroid of its size and to be lacking absorptions deeper than ∌2% due to OH or H2O. Didymos’ mid-infrared emissivity spectrum is within the range of what has been measured on S-complex asteroids observed with the Spitzer Space Telescope and is most consistent with emission from small (<25 ÎŒm) surface particles. We conclude that the observed reflectance and physical properties make the Didymos system a good proxy for the type of ordinary chondrite asteroids that cross near-Earth space, and a good representative of likely future impactors

    Successful Kinetic Impact into an Asteroid for Planetary Defense.

    No full text
    While no known asteroid poses a threat to Earth for at least the next century, the catalog of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is the first full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by DART's impact4. While past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in Dimorphos's orbit7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary

    Rapid deployment of SARS-CoV-2 testing: The CLIAHUB.

    No full text

    Cometary Dust

    No full text
    corecore