457 research outputs found

    Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    Get PDF
    BACKGROUND: Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. RESULTS: By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. CONCLUSIONS: Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function

    Complex architecture and regulated expression of the Sox2ot locus during vertebrate development

    Get PDF
    The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development

    Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

    Get PDF
    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD

    Constitutionalising regulatory governance: The case of the Victims' Commissioner

    Get PDF
    Commissioners sit at the heart of multi-level governance in England and Wales in providing regulatory links between identifiable policy constituencies and government. They are public scrutiny bodies that seek to set and uphold standards for a wide range of public services but, in practice and by design, have very few powers to enforce those standards. This article explores the varying powers of what we term “special interest” commissioners. It focuses on the constitutional nature and powers of the Victims’ Commissioner contrasting these with those of other commissioners. Drawing particularly on Black’s innovative analysis of ways of constitutionalising regulatory governance frameworks, and with reference to the literature on “guarantor institutions”, it highlights inconsistencies within the constitutional position of the Victims’ Commissioner. While these are not unique to this body since, as we will demonstrate, there is no one constitutional arrangement for a special interest commissioner, they are of particular significance given current debates on victims’ rights, the call for a more robust code of such rights and Parliamentary consideration of the Victims’ and Prisoners Act 2024. They also speak to a wider implementation gap within prevailing multi-level governance mechanisms. This article suggests that this could be addressed, in part, by strengthening commissioners’ ability to enforce standards as well as to exert influence, and by ensuring that, following Black, commissioners’ work is more closely aligned with constitutional values and norms. The Victims’ Commissioner would then have a clearer role on behalf of, and for, victims and ensure respect for constitutional norms in the criminal justice system

    Mindcontrol: a web application for brain segmentation quality control

    Get PDF
    Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study

    An anatomic gene expression atlas of the adult mouse brain

    Get PDF
    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea)

    Judicial Review, Irrationality, and the Limits of Intervention by the Courts

    Get PDF
    When exercising judicial review, the courts, on occasions, have intervened in circumstances where administrative decisions were not irrational. However, these low standards of judicial intervention are arguably constitutional, especially since the enactment of the Human Rights Act 1998 (HRA). To this end, this article seeks to establish a zone of executive decision-making, for reasons of democracy, where the courts are clearly excluded. But it is unable to do so. Does this mean, therefore, that judicial intervention on the grounds of irrationality exists without limit? Assuming this to be the case, it is suggested that the courts should show greater respect to the administrative branch of the state where it has genuinely sought to engage with the legal process in arriving at its decisions
    corecore