457 research outputs found

    Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    Get PDF
    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3-30 degrees from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. We also apply a simple model that attributes the zodiacal light as being due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs), dust from Halley-type comets, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross-section seen in the ecliptic at 1 AU, but that at least 89% of the dust cross-section enclosed by a 1 AU radius sphere is of a cometary origin. When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12 km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30 km comet, although the latter mass is uncertain by orders of magnitude.Comment: To be published in Icaru

    METHOD DEVELOPMENT AND VALIDATION OF LOPINAVIR IN TABLET DOSAGE FORM USING REVERSED-PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

    Get PDF
    Objective: Reversed-phase high-performance liquid chromatographic method (RP-HPLC) was developed for the assessment of lopinavir in the dosage form of tablet.Methods: Chromatogram was run through using Kromosil C18 4.5×150 mm using a mobile phase methanol: water of ratio 65:35% v/v with a rate of flow of 0.8 ml/min, measured by UV spectrometric detection at 265 nm. The method developed was validated in terms of precision, accuracy, linearity, and robustness parameters.Results: Retention time of lopinavir established at 2.482 min and percentage R.S.D of lopinavir found to be 1.0% and 0.5%, respectively. The method shows that good linearity range of 30–150 μg correlation coefficient of lopinavir was 0.997. The limit of detection was 2.97 and limit of quantification was 9.92, respectively. The percent purity of lopinavir was 99.87%.Conclusion: The suggested method (Rp-HPLC) for concurrent assay lopinavir was validated, which is appropriate method for the analysis oflopinavir quantitatively in tablet dosage forms and bulk

    Direct Band Gap Gallium Antimony Phosphide (GaSb\u3csub\u3ex\u3c/sub\u3eP\u3csub\u3e1-x\u3c/sub\u3e) Alloys

    Get PDF
    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields

    Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane)

    Get PDF
    We describe a simple and versatile method for bonding thermoplastics to elastomeric polydimethylsiloxane (PDMS) at room temperature. The bonding of various thermoplastics including polycarbonate (PC), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), and polystyrene (PS), to PDMS has been demonstrated at room temperature. An irreversible bonding was formed instantaneously when the thermoplastics, activated by oxygen plasma followed by aminopropyltriethoxysilane modification, were brought into contact with the plasma treated PDMS. The surface modified thermoplastics were characterized by water contact angle measurements and Xray photoelectron spectroscopy. The tensile strength of the bonded hybrid devices fabricated with PC, COC, PMMA, and PS was found to be 430, 432, 385, and 388 kPa, respectively. The assembled devices showed high burst resistance at a maximum channel pressure achievable by an in-house built syringe pump, 528 kPa. Furthermore, they displayed very high hydrolytic stability; no significant change was observed even after the storage in water at 37 degrees C over a period of three weeks. In addition, this thermoplastic-to-PDMS bonding technique has been successfully employed to fabricate a relatively large sized device. For example, a lab-on-a-disc with a diameter of 12 cm showed no leakage when it spins for centrifugal fluidic pumping at a very high rotating speed of 6000 rpm.close443

    Design of intelligent mesoscale periodic array structures utilizing smart hydrogel

    Get PDF
    Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation

    Effects of Adipocyte Aryl Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice

    Get PDF
    BACKGROUND: Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear. OBJECTIVES: In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss. METHODS AND RESULTS: PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)-fed control (AhRfl/fl) mice but not in adipocyte AhR-deficient mice (AhRAdQ). Unexpectedly, AhRAdQ mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhRAdQ mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhRfl/fl controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhRfl/fl mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhRAdQ mice exhibiting weight loss. CONCLUSIONS: Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis

    The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes

    Get PDF
    Although the list of completed genome sequencing projects has expanded rapidly, sequencing and analysis of expressed sequence tags (ESTs) remain a primary tool for discovery of novel genes in many eukaryotes and a key element in genome annotation. The TIGR Gene Indices (http://www.tigr.org/tdb/tgi) are a collection of 77 species-specific databases that use a highly refined protocol to analyze gene and EST sequences in an attempt to identify and characterize expressed transcripts and to present them on the Web in a user-friendly, consistent fashion. A Gene Index database is constructed for each selected organism by first clustering, then assembling EST and annotated cDNA and gene sequences from GenBank. This process produces a set of unique, high-fidelity virtual transcripts, or tentative consensus (TC) sequences. The TC sequences can be used to provide putative genes with functional annotation, to link the transcripts to genetic and physical maps, to provide links to orthologous and paralogous genes, and as a resource for comparative and functional genomic analysis

    How Should Diverse Stakeholder Interests Shape Evaluations of Complex Water Resources Systems Robustness When Confronting Deeply Uncertain Changes?

    Get PDF
    Robustness analysis can support the design and operation of large-scale water infrastructure projects confronting deeply uncertain futures. However, diverse actors, contextual specificities, sectoral interests, and risk attitudes make it difficult to identify an appropriate robustness metric to rank decision alternatives under deep uncertainty. Here, we clarify how methodological choices affect robustness evaluation using the multi-actor, multi-sector Inchampalli-Nagarjuna Sagar water transfer megaproject in Southern India. We compare a suite of water transfer strategies discovered using evolutionary multi-objective direct policy search (EMODPS), a strategy proposed by regional authorities and the status quo of no water transfer. We stress-test these strategies across scenarios that capture climatic and socioeconomic uncertainties and rank them using robustness metrics representing sectoral perspectives and priorities of different actors with varying risk attitudes. Results show a considerable impact of metric choices on robustness rankings of strategies, with compromise solution discovered via EMODPS as robust. The no-transfer strategy results in the worst water supply robustness with an average volumetric deficit of 17% of total historical demands but emerges as a robust alternative for 6 out of 12 combinations of actor-sectors with high risk aversion. Also, changes in the amplitude of the Indian Summer Monsoon is identified as the most important uncertain factor determining the failure of strategies. Our findings highlight that the selection of robust solutions should be guided by an understanding of how assumed risk attitudes shape stakeholders' perceptions of vulnerabilities. These findings are generalizable to large infrastructure projects with diverse stakeholders and multisectoral impacts

    Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data

    Get PDF
    Motivation: Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed methods for SNV detection from single-cell DNA sequencing data, such as SCI and scVILP, leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data. Results: Here, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under different settings, we show that, Phylovar outperforms SCI in terms of running time while being more accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative diseases. Availability and implementation: Phylovar is implemented in Python and is publicly available at https://github.com/NakhlehLab/Phylovar.National Science Foundation | Ref. IIS-1812822National Science Foundation | Ref. IIS-210683
    corecore