119 research outputs found

    Membranous Nephropathy

    Get PDF
    Membranous nephropathy (MN) is a glomerular disease that is the leading cause of nephrotic syndrome in non-diabetic Caucasian adults. MN is most often primary (idiopathic) and the remaining is secondary to systemic disease or exposure to infection or drugs. The majority of patients with MN have circulating antibodies to the podocyte antigens phospholipase A2 receptor (PLA2R) (70%) and thrombospondin type-1 domain-containing 7A (THSD7A) (3–5%). Immunologic remission (depletion of PLA2R antibodies) often precedes and may predict clinical remission. Untreated, about one-third of patients undergo spontaneous remission, one-third have persistent proteinuria but maintain kidney function and the remaining one-third will develop end stage kidney failure. All patients with idiopathic MN should be treated with conservative care from the time of diagnosis to minimise proteinuria. Immunosuppressive therapy is traditionally reserved for patients who have persistent nephrotic-range proteinuria despite conservative care. Immunosuppressive agents for primary MN include combination of corticosteroids/alkylating agent or calcineurin inhibitors and rituximab. This chapter will review the epidemiology, diagnosis and treatment of MN, particularly focusing on idiopathic MN

    Association of Stromal Tumor-Infiltrating Lymphocytes With Recurrence-Free Survival in the N9831 Adjuvant Trial in Patients With Early-Stage HER2-Positive Breast Cancer

    Get PDF
    Importance The presence of tumor-infiltrating lymphocytes at diagnosis is reported to be prognostic in triple-negative breast cancer. Objective To evaluate the association of stromal tumor-infiltrating lymphocytes (STILs) with recurrence-free survival (RFS) in women with human epidermal growth factor receptor 2 (HER2)–positive breast cancer treated with chemotherapy or chemotherapy plus trastuzumab in the N9831 trial. Design, Setting, and Participants Hematoxylin-eosin–stained tumor slides from patients with early-stage HER2-positive breast cancer in 2 of the 3 arms of the N9831 trial were assessed for STILs at an academic medical center. The amounts of STILs were quantitated in deciles, and a level of at least 60% STILs was used for the prespecified categorical cutoff. The association between STILs and RFS was evaluated with Cox models. Exposure Standard chemotherapy consisting of doxorubicin-cyclophosphamide followed by weekly paclitaxel (arm A) or doxorubicin-cyclophosphamide followed by weekly paclitaxel plus trastuzumab followed by trastuzumab alone (arm C). Main Outcomes and Measures Stromal tumor-infiltrating lymphocytes and their association with RFS. Results A total of 489 patients from arm A and 456 patients from arm C were assessed with a median (range) follow-up of 4.4 (0-13.6) years. The 10-year Kaplan-Meier estimates for RFS in arm A were 90.9% and 64.5% for patients with high and low levels of STILs, respectively (hazard ratio [HR], 0.23 [95% CI, 0.07-0.73]; P = .01). The 10-year estimates for RFS in arm C were 80.0% and 80.1% for patients with high and low levels of STILs, respectively (HR, 1.26 [95% CI, 0.50-3.17]; P = .63). The test for interaction between trastuzumab treatment and STIL status was statistically significant (P = .03). In a multivariable analysis, STIL status remained significantly associated with RFS in arm A and not significantly associated in arm C (HR, 1.01 [95% CI, 0.89-1.15]; interaction P = .04). Conclusions and Relevance This analysis of participants in the N9831 trial found that the presence of STILs was prognostically associated with RFS in patients treated with chemotherapy alone but not in patients treated with chemotherapy plus trastuzumab. High levels of STILs were associated with lack of trastuzumab therapy benefit, in contrast to a previously reported association between increased levels of STILs and increased trastuzumab benefit in HER2-positive patients

    SGLT2 inhibitors for patients with type 2 diabetes and CKD: a narrative review

    Get PDF
    Sodium‐glucose co-transporter 2 (SGLT2) inhibitors have recently emerg ed as an effective means to protect kidney function in people with type 2 diabetes and chronic kidney disease (CKD). In this review, we explore the role of SGLT2 inhibition in these individuals. SGLT2 inhibitors specifically act to inhibit sodium and glucose reabsorption in the early proximal tubule of the renal nephron. Although originally developed as glucose-lowering agents through their ability to induce glycosuria, it became apparent in cardiovascular outcome trials that the trajectory of kidney function decline w as significantly slowed and the incidence of serious falls in kidney function was reduced in participants receiving an SGLT2 inhibitor. These observations have recently led to spe cific outcome trials in participants with CKD, including DAPA-CKD, CREDENCE and EMPA-KIDNEY, and real-world studies, like CVD-REAL-3, that have confirmed the observation of kidney benefits in this setting. In response, recent KDIGO Guidelines have recommended the use of SGLT2 inhibitors as first-line therapy in patients with CKD, alongside statins, renin–angiotensin– aldosterone system inhibitors and multifactorial risk factor management as indicated. However, SGLT2 inhibitors remain significantly underutilized in the setting of CKD. Indeed, an inertia paradox exists, with patients with more severe disease less likely to receive an SGLT2 inhibitor. Concerns regarding safety appear unfounded, as acute kidney injury, hyperkalaemia, major acute cardiovascular events and cardiac death in patients with CKD appear to be lower following SGLT2 inhibition. The first-in-clas s indication of dapagliflozin for CKD may begin a new approach to managing kidney disease in type 2 diabetes

    Variability in estimated glomerular filtration rate and the risk of major clinical outcomes in diabetes:Post hoc analysis from the ADVANCE trial

    Get PDF
    There are limited data on whether estimated glomerular filtration rate (eGFR) variability modifies the risk of future clinical outcomes in type 2 diabetes (T2D). We assessed the association between 20-month eGFR variability and the risk of major clinical outcomes in T2D among 8241 participants in the ADVANCE trial. Variability in eGFR (coefficient of variation [CVeGFR]) was calculated from three serum creatinine measurements over 20 months. Participants were classified into three groups by thirds of CVeGFR: low (6.4 to 12.1). The primary outcome was the composite of major macrovascular events, new or worsening nephropathy and all-cause mortality. Cox regression models were used to estimate hazard ratios (HRs). Over a median follow-up of 2.9 years following the 20-month period, 932 (11.3%) primary outcomes were recorded. Compared with low variability, greater 20-month eGFR variability was independently associated with higher risk of the primary outcome (HR for moderate and high variability: 1.07, 95% CI: 0.91-1.27 and 1.22, 95% CI: 1.03-1.45, respectively) with evidence of a positive linear trend (p = .015). These data indicate that eGFR variability predict changes in the risk of major clinical outcomes in T2D

    Benefits and harms of oral anticoagulant therapy in chronic kidney disease: a systematic review and meta-analysis

    Get PDF
    Background: Effects of oral anticoagulation in chronic kidney disease (CKD) are uncertain. Purpose: To evaluate the benefits and harms of vitamin K antagonists (VKAs) and non–vitamin K oral anticoagulants (NOACs) in adults with CKD stages 3 to 5, including those with dialysis-dependent end-stage kidney disease (ESKD). Data Sources: English-language searches of MEDLINE, EMBASE, and Cochrane databases (inception to February 2019); review bibliographies; and ClinicalTrials.gov (25 February 2019). Study Selection: Randomized controlled trials evaluating VKAs or NOACs for any indication in patients with CKD that reported efficacy or bleeding outcomes. Data Extraction: Two authors independently extracted data, assessed risk of bias, and rated certainty of evidence. Data Synthesis: Forty-five trials involving 34 082 participants who received anticoagulation for atrial fibrillation (AF) (11 trials), venous thromboembolism (VTE) (11 trials), thromboprophylaxis (6 trials), prevention of dialysis access thrombosis (8 trials), and cardiovascular disease other than AF (9 trials) were included. All but the 8 trials involving patients with ESKD excluded participants with creatinine clearance less than 20 mL/min or estimated glomerular filtration rate less than 15 mL/min/1.73 m2. In AF, compared with VKAs, NOACs reduced risks for stroke or systemic embolism (risk ratio [RR], 0.79 [95% CI, 0.66 to 0.93]; high-certainty evidence) and hemorrhagic stroke (RR, 0.48 [CI, 0.30 to 0.76]; moderate-certainty evidence). Compared with VKAs, the effects of NOACs on recurrent VTE or VTE-related death were uncertain (RR, 0.72 [CI, 0.44 to 1.17]; low-certainty evidence). In all trials combined, NOACs seemingly reduced major bleeding risk compared with VKAs (RR, 0.75 [CI, 0.56 to 1.01]; low-certainty evidence). Limitation: Scant evidence for advanced CKD or ESKD; data mostly from subgroups of large trials. Conclusion: In early-stage CKD, NOACs had a benefit–risk profile superior to that of VKAs. For advanced CKD or ESKD, there was insufficient evidence to establish benefits or harms of VKAs or NOACs. Primary Funding Source: None. (PROSPERO: CRD42017079709

    Evaluation of Variation in the Performance of GFR Slope as a Surrogate End Point for Kidney Failure in Clinical Trials that Differ by Severity of CKD

    Get PDF
    BACKGROUND: The GFR slope has been evaluated as a surrogate end point for kidney failure in meta-analyses on a broad collection of randomized controlled trials (RCTs) in CKD. These analyses evaluate how accurately a treatment effect on GFR slope predicts a treatment effect on kidney failure. We sought to determine whether severity of CKD in the patient population modifies the performance of GFR slope. METHODS: We performed Bayesian meta-regression analyses on 66 CKD RCTs to evaluate associations between effects on GFR slope (the chronic slope and the total slope over 3 years, expressed as mean differences in ml/min per 1.73 m2/yr) and those of the clinical end point (doubling of serum creatinine, GFR &lt;15 ml/min per 1.73 m2, or kidney failure, expressed as a log-hazard ratio), where models allow interaction with variables defining disease severity. We evaluated three measures (baseline GFR in 10 ml/min per 1.73 m2, baseline urine albumin-to-creatinine ratio [UACR] per doubling in mg/g, and CKD progression rate defined as the control arm chronic slope, in ml/min per 1.73 m2/yr) and defined strong evidence for modification when 95% posterior credible intervals for interaction terms excluded zero. RESULTS: There was no evidence for modification by disease severity when evaluating 3-year total slope (95% credible intervals for the interaction slope: baseline GFR [-0.05 to 0.03]; baseline UACR [-0.02 to 0.04]; CKD progression rate [-0.07 to 0.02]). There was strong evidence for modification in evaluations of chronic slope (95% credible intervals: baseline GFR [0.02 to 0.11]; baseline UACR [-0.11 to -0.02]; CKD progression rate [0.01 to 0.15]). CONCLUSIONS: These analyses indicate consistency of the performance of total slope over 3 years, which provides further evidence for its validity as a surrogate end point in RCTs representing varied CKD populations.</p

    Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank

    Get PDF
    Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle

    Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    Get PDF
    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos
    corecore