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Abstract

Sodium‐glucose co-transporter 2 (SGLT2) inhibitors have recently emerged as an effective 
means to protect kidney function in people with type 2 diabetes and chronic kidney 
disease (CKD). In this review, we explore the role of SGLT2 inhibition in these individuals. 
SGLT2 inhibitors specifically act to inhibit sodium and glucose reabsorption in the early 
proximal tubule of the renal nephron. Although originally developed as glucose-lowering 
agents through their ability to induce glycosuria, it became apparent in cardiovascular 
outcome trials that the trajectory of kidney function decline was significantly slowed and 
the incidence of serious falls in kidney function was reduced in participants receiving 
an SGLT2 inhibitor. These observations have recently led to specific outcome trials in 
participants with CKD, including DAPA-CKD, CREDENCE and EMPA-KIDNEY, and real-world 
studies, like CVD-REAL-3, that have confirmed the observation of kidney benefits in this 
setting. In response, recent KDIGO Guidelines have recommended the use of SGLT2 
inhibitors as first-line therapy in patients with CKD, alongside statins, renin–angiotensin–
aldosterone system inhibitors and multifactorial risk factor management as indicated. 
However, SGLT2 inhibitors remain significantly underutilized in the setting of CKD. Indeed, 
an inertia paradox exists, with patients with more severe disease less likely to receive an 
SGLT2 inhibitor. Concerns regarding safety appear unfounded, as acute kidney injury, 
hyperkalaemia, major acute cardiovascular events and cardiac death in patients with CKD 
appear to be lower following SGLT2 inhibition. The first-in-class indication of dapagliflozin 
for CKD may begin a new approach to managing kidney disease in type 2 diabetes.

Introduction

At least half of all adults with type 2 diabetes (T2D) have 
comorbid chronic kidney disease (CKD), with either an 
elevated urinary albumin excretion rate (uAER) and/or a 
reduced estimated glomerular filtration rate (eGFR) (1, 
2). T2D is the single most common cause of CKD and 
kidney failure in most developed countries and in many 
developing countries (3, 4, 5) and continues to increase due 
to increasing diabetes, population ageing and improved 
survival (5). The enormous health, societal and economic 

burden associated with CKD demands that some priority 
should be given to the prevention and treatment of CKD 
in people with T2D.

Sodium‐glucose co-transporter 2 (SGLT2) inhibitors 
have recently emerged as an effective means to protect 
kidney function in patients with T2D. Although SGLT2 
inhibitors achieve urinary glucose wasting and were initially 
developed as glucose-lowering agents for the treatment of 
T2D, this represents only one of their potential indications. 
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During recent large cardiovascular outcome trials (CVOTs), 
it was observed that SGLT2 inhibitors may also have 
additional benefits for preventing the development and 
progression of CKD in people with T2D beyond what could 
be expected from glucose lowering alone (6, 7, 8). Similarly, 
recent studies undertaken in people with T2D and heart 
failure (HF) have also observed a slower decline in kidney 
function in participants receiving SGLT2 inhibitors as 
well as a lower incidence of CKD and kidney failure (9, 
10). Given these observations, as well as the known direct 
actions of SGLT2 inhibitors in the kidney, several large 
trials in patients with established CKD have been initiated. 
Notably, three of these (CREDENCE, DAPA-CKD and 
EMPA-KIDNEY) were stopped early because of unequivocal 
evidence of benefit in this setting (11, 12, 13). The SCORED 
study also showed a positive primary outcome, although 
it was stopped prematurely for administrative reasons 
(14). Taken together, these findings strongly support the 
recent recommendations that SGLT2 inhibitors should be 
considered as first-line therapy, alongside metformin, for 
the management of all people with T2D with or at high 
risk of developing CKD (15). Moreover, because of how 
common CKD is, and will be in the future, there is also now 
a strong argument that foundational therapy with SGLT2 
inhibitors should be considered for all people with T2D if 
only to reduce the future incidence and burden of CKD.

In this narrative review, we explore the potential 
role of SGLT2 inhibition in individuals with T2D and 
CKD or who are at risk of developing CKD. We examine 
recent clinical trial data and observational evidence 
following treatment with SGLT2 inhibitors in patients 
with T2D and CKD, with a focus on their effects on kidney 
function, cardiovascular (CV) and HF outcomes and safety 
in this often-challenging setting. As a narrative review, 
this publication is based on non-systematic searches of 
PubMed and the authors’ own expertise and knowledge 
of the relevant literature, without following a specific 
protocol or set of predetermined inclusion and exclusion 
criteria.

CKD in patients with T2D: state of play

Risk factors for CKD in T2D

By the time that patients with T2D develop impaired 
kidney function, there has already been a significant and 
irreversible loss of nephron mass, which makes a return 
to normal kidney function impossible, while placing 
extra functional demands on the remnant kidney that 

further accelerate kidney function decline, even if the 
risk factors that established the initial nephron damage 
are subsequently well controlled. Identifying those 
individuals at risk of losing kidney structure and function 
before it is irreversibly gone can be practically achieved by 
the following:

• Carrying out serial monitoring of the eGFR: those 
individuals (so-called ‘fast progressors’) who are 
losing more than 3 mL/min/1.73 m2/year (e.g. their 
eGFR has gone from 80 mL/min/1.73 m2 to 70 mL/
min/1.73 m2 in 3 years) are likely to be at increased risk 
of developing impaired kidney function.

• Estimating the urinary albumin to creatinine ratio 
(uACR): those individuals with a uACR > 30 mg/g, 
and especially >300 mg/g, are at increased risk of 
developing impaired kidney function.

• Identifying individuals experiencing other 
complications of T2D (e.g. foot disease, eye disease, 
CV disease (CVD), erectile dysfunction) who are also 
at increased risk of developing CKD because of the 
field nature of end-organ damage in T2D.

• Noting individuals with poor control of their T2D, 
blood pressure, lipid levels and/or weight are also at 
increased risk of developing CKD because each of 
these factors contributes to kidney function decline.

• Recognizing that certain ethnic groups (e.g. 
individuals from Indigenous Australian, Polynesian, 
Indian and South-east Asian, Middle Eastern, Hispanic 
and African backgrounds) and disadvantaged 
populations also have an increased risk of developing 
T2D and CKD.

• Understanding that individuals with a strong family 
history of CKD and kidney failure are at increased risk 
of developing CKD and impaired kidney function, 
particularly with the development of T2D.

In each of these settings, the early initiation of 
multifactorial interventions to slow the decline in kidney 
function and reduce the development of impaired kidney 
function (detailed later) should be strongly considered. 
Other (low-risk) individuals should continue to be 
monitored on a regular basis for the development of risks 
or signs of progressive kidney function decline. Some 
individuals will also have a personal preference for a 
more proactive approach to their management, including 
protection of their kidney function even if it currently 
appears normal (e.g. individuals with a family member 
with CKD).
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Screening and diagnosis

Because CKD is so common and best detected early, 
screening for CKD should be undertaken in all people with 
T2D at the time of their diabetes diagnosis, and at least 
annually thereafter (15). This testing encompasses the 
estimation of both the uACR from urinalysis and eGFR from 
a blood test. Neither test alone can identify all individuals 
with T2D and CKD, which is why regularly undertaking 
both screening tests is important (15). However, in clinical 
practice, an annual eGFR is more commonly performed 
than the uACR (16, 17). If either screening test is positive 
(i.e. the uACR is significantly elevated (>30 mg/g) and/or 
the eGFR is significantly reduced (<60 mL/min/1.73 m2)), 
a diagnosis of CKD should be confirmed by repeat testing 
(15). It is seldom necessary to perform additional tests 
to define the cause of CKD in patients with T2D such as 
a kidney biopsy or other biomarkers. However, patients 
with an atypical presentation, such as a rapid onset of 
impaired kidney function, heavy proteinuria, microscopic 
haematuria or red blood cell casts in the urine or kidney 
pain, should be considered for referral to nephrology 
specialist services.

Standard management approach for CKD

The true value of screening for CKD comes from the earlier 
opportunity it provides to initiate interventions to slow 
the decline in kidney function and reduce the incidence 
of impaired kidney function. As a rule of thumb, any 
treatment that slows the decline in eGFR by more than 
0.75 mL/min/1.73 m2/year over 3 years predicts that the 
same intervention will also benefit hard kidney outcomes 
like the doubling of serum creatinine or end-stage kidney 
disease (ESKD) (18). Intensive multifactorial risk factor 
interventions remain the cornerstone of the prevention 
and management of CKD in people with T2D (15). This 
strategy includes optimal control of blood glucose, lipids, 
blood pressure and weight, as well as regular physical 
activity, a healthy diet and smoking cessation, built around 
a central pillar of organ protection (Fig. 1) (15). When 
instituted comprehensively in patients with T2D and 
CKD, this strategy can improve CV outcomes and survival 
(19). In addition, in STENO-2, kidney function decline 
was slower in the intensive-therapy group compared with 
the conventional-therapy group (3.1 mL/min/year vs 4.0 
mL/min/year). Progression to ESKD was also numerically 
lower in the intensive group (hazard ratio (HR) 0.36; 95% 
confidence interval (CI) 0.12–1.05), although the study 
was underpowered to test this outcome (19).

Blockers of the renin–angiotensin–aldosterone system 
(RAAS), such as angiotensin-converting enzyme inhibitors, 
angiotensin receptor antagonists and mineralocorticoid 
receptor antagonists also have additional benefits in the 
kidney beyond simply lowering blood-pressure levels, 
particularly in patients with severely elevated albuminuria 
or impaired kidney function (20, 21, 22). However, in 
patients with T2D without CKD, any blood-pressure-
independent renoprotective actions appear modest and 
limited to the prevention of new-onset macroalbuminuria 
(23). The use of high-potency statins in patients with CKD 
is also standard of care (15) because the CV risk of most 
people with T2D and CKD usually exceeds 10% over 10 
years and is often considerably higher. However, although 
clearly beneficial for reducing major acute CV events 
(MACEs), statins do not prevent CKD and their effects on 
kidney function decline are not clinically significant in 
patients with CKD (24).

Prognosis of CKD in patients with T2D

People with CKD are at increased risk of kidney failure, 
CVD, HF, infections, hospitalization and premature 
mortality (25). The most common causes of premature 
mortality in patients with T2D and CKD are atherosclerotic 
CVD, HF and infections. Sadly, most adults with T2D and 
CKD die prematurely due to these complications before 
progressing to kidney failure (26).

These clinical outcomes and prognosis in people with 
T2D are correlated to both the presence and the severity 
of CKD (27). For example, the larger the reduction in 
eGFR below 60 mL/min/1.73 m2, the greater the risk of 
poor health outcomes. Although the association between 

Figure 1
The multifactorial management of patients with T2D and CKD in which 
organ protection is now the central pillar of care, surrounded by residual 
risk factor reduction.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-23-0005

https://ec.bioscientifica.com © 2023 the author(s)
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 08/07/2023 03:33:55AM
via free access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-23-0005
https://ec.bioscientifica.com


M Thomas et al. e230005

PB–XX

12:8

eGFR and outcomes is clearly continuous in nature 
(25), recent practice has been to more simply categorize 
patients by stages, like cancer. Stage 3a denotes an eGFR 
of 45–59 mL/min/1.73 m2, or moderately reduced kidney 
function; stage 3b denotes an eGFR of 30–44 mL/min/ 
1.73 m2, or moderate to severely reduced kidney function; 
stage 4 denotes an eGFR of 15–29 mL/min/1.73 m2, or 
severely reduced kidney function and stage 5 denotes 
an eGFR of < 15 mL/min/1.73 m2, or kidney failure. 
Equally, the greater the urinary albumin excretion, the 
worse the prognosis (25). Again, recent practice has been 
to categorize patients based on the severity of urinary 
albumin excretion (A1: uACR < 30 mg/g, denoting normal 
to mildly increased albuminuria; A2: uACR 30–300 
mg/g, denoting moderately increased albuminuria; 
and A3: uACR > 300 mg/g, denoting severely increased 
albuminuria) (15). These correspond to the previously 
used categories of normoalbuminuria, microalbuminuria 
and macroalbuminuria developed over 40 years ago. 
Individuals with both a reduced eGFR and an elevated 
uAER generally have a worse prognosis than individuals 
with either alone (27). This is conceptualized in the widely 
used prognostic chart adopted by the Kidney Disease: 
Improving Global Outcomes (KDIGO) guidelines for the 
management of CKD in people with T2D (15).

SGLT2 inhibitors as the new standard of care 
for T2D and CKD

In addition to the standard of care interventions detailed 
earlier, it is now widely recommended that all people with 
T2D and CKD should be considered for treatment with an 
SGLT2 inhibitor (28). Indeed, recent KDIGO guidelines 
now consider SGLT2 inhibitors as first-line therapy, 
alongside metformin, for the management of patients 
with T2D and CKD (15, 29). This recommendation partly 
reflects the reduction in MACE outcomes and lower 
rates of hospitalization for HF consistently observed 
in the subgroup of patients with CKD randomized to 
receive an SGLT2 inhibitor in recent trials, including the 
CANagliflozin cardioVascular Assessment Study (CANVAS) 
Program (30), DECLARE-TIMI (31), DAPA-HF (32), 
EMPEROR-Reduced (33, 34) and EMPEROR-Preserved (35) 
(Supplementary Table 1, see section on supplementary 
materials given at the end of this article). Indeed, in these 
studies, the absolute beneficial effect of SGLT2 inhibitors 
on MACE outcomes and hospitalization for HF appears to 
be greatest in people with T2D and CKD (28, 36, 37).

Treatment with SGLT2 inhibitors in patients with 
T2D and CKD is also associated with a reduced incidence 
of CV death (HR 0.84; 95% CI 0.74–0.96) (36, 38), the 
single major cause of death in this setting. As a result, the 
risk of all-cause mortality was also reduced by 14% with 
SGLT2 inhibition treatment compared with placebo (HR 
0.86; 95% CI 0.77–0.96) (36). In addition, these large trials 
have also documented (as an observational outcome) 
a clear slowing in the rate of decline in kidney function 
and reduced incidence of impaired kidney function (39), 
which has directly led to dedicated studies of SGLT2 
inhibitors in people with CKD (detailed below).

Recent trials undertaken in patients with CKD

Four large randomized controlled trials, each conducted 
against a backdrop of the standard of care, have been 
recently undertaken in participants with established 
CKD, some or all of whom also had T2D (Supplementary 
Table 1).

The CREDENCE study was the first study undertaken 
in individuals with T2D and established CKD, who were 
randomized to receive the SGLT2 inhibitor, canagliflozin 
or placebo, on top of a comprehensive standard of care (11). 
Most participants had a reduced eGFR and, of those who 
did not, all had severely elevated albuminuria, meaning 
that all participants were at very high risk of developing 
kidney failure. The CREDENCE trial was stopped early 
when it became clear at a prespecified interim analysis that 
participants receiving an SGLT2 inhibitor had benefits 
for the primary outcome (P < 0.01). At adjudication, the 
relative risk of the composite primary outcome (doubling 
of serum creatinine, dialysis, kidney transplantation 
or death from kidney or CV causes) was 30% lower in 
the participants receiving canagliflozin (HR 0.70; 95% 
CI 0.59–0.82; P = 0.00001). The key secondary kidney 
outcome (doubling of serum creatinine, end-stage kidney 
failure treated by dialysis or kidney transplantation, or 
death from kidney failure) was also reduced by 34% (HR 
0.66; 95% CI 0.53–0.81; P < 0.001), and the relative risk 
of ESKD was lowered by 32% (HR 0.68; 95% CI 0.54–0.86; 
P = 0.002) with canagliflozin treatment compared with 
placebo (11).

The observed renoprotective effects of canagliflozin 
were consistent across all subgroups of the trial, including 
individuals with severely reduced eGFR (40). In addition, 
a post hoc analysis showed that canagliflozin treatment 
led to early sustained reductions in urinary albumin 
excretion, which were independently associated with 
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improved long-term kidney and CV-related outcomes 
(41).

Finally, in the CREDENCE study, the rate of chronic 
decline of eGFR was also slowed by 60% following 
treatment with canagliflozin (42, 43). If this finding can be 
extrapolated into the future, the likelihood of developing 
kidney failure would have been delayed by an average of 13 
years in participants receiving canagliflozin (42, 43).

The Dapagliflozin and Prevention of Adverse 
outcomes in Chronic Kidney Disease (DAPA-CKD) trial 
was undertaken in participants with established CKD, 
who were randomized to receive the SGLT2 inhibitor, 
dapagliflozin or placebo on top of standard of care. 
Approximately 68% of participants also had T2D (44, 
45). Most participants had a reduced eGFR < 60 mL/
min/1.73 m2 and elevated albuminuria (uACR > 200 
mg/g), meaning that all participants were at high risk 
of developing kidney failure. The DAPA-CKD trial was 
also stopped early because of clear evidence of benefit at 
a prespecified interim analysis. The primary composite 
outcome (sustained decline in eGFR of ≥ 50%, kidney 
failure or death from kidney or CV causes) was reduced by 
39% in participants receiving treatment compared with 
placebo (46). Specifically in participants with T2D, the 
primary outcome was reduced by 36% (HR 0.64; 95% CI 
0.52–0.79) (13).

The secondary kidney-specific composite outcome 
(sustained decline in eGFR of ≥50% or kidney failure, or 
death from kidney causes) was also reduced by 43% in 
participants with T2D treated with dapagliflozin (HR 
0.57; 95% CI 0.45–0.73) and kidney failure was reduced 
by 30% (HR 0.69; 95% CI 0.51–0.92) (13). The rate of 
decline in eGFR was also slowed in participants with 
T2D (44) (dapagliflozin −1.58 mL/min/1.73 m2/year vs 
placebo: −3.84 mL/min/1.73 m2/year, equating to a 59% 
reduction in the rate of eGFR; Fig. 2) and fewer individuals 
with T2D developed a 50% decline in their eGFR during 
the study (13). In addition to actions on kidney function, 
treatment with dapagliflozin also showed a reduction 
in hospitalization for HF and all-cause mortality in 
participants with T2D and CKD (38).

In participants without T2D (i.e. with non-diabetic 
kidney disease) enrolled in the DAPA-CKD trial, the 
primary and secondary composite outcomes were also 
significantly improved and essentially no different from 
diabetic individuals (13). Notably, the major cause of non-
diabetic CKD in this study was hypertension/renovascular 
disease, which is also more common in people with T2D 
and often also contributes to their kidney function decline 

in this setting. Taken together, these data show, for the 
first time, that SGLT2 inhibition is working to protect the 
kidneys, and not just working on the T2D that damages 
them.

The SCORED study assessed the safety of sotagliflozin, 
a dual SGLT1 and SGLT2 inhibitor, in 10,584 patients 
with T2D and impaired kidney function (eGFR 25–60 mL/
min/1.73 m2) (14). Although undertaken in participants 
with CKD, its primary endpoint was changed during 
the trial to the composite of deaths from CV causes, 
hospitalizations for HF and urgent visits for HF. The trial 
was stopped early due to administrative reasons, including 
funding and the COVID-19 pandemic. Nonetheless, after 
a median follow-up of 16 months, the primary composite 
outcome was reduced by sotagliflozin compared with 
placebo (HR 0.74; 95% CI 0.63–0.88; P < 0.001). The MACE 
outcome (a composite of CV death, non-fatal myocardial 
infarction or stroke) was also reduced (HR 0.84; 95% CI 
0.72–0.99), as was the composite outcome of death from CV 
causes or hospitalization for HF (HR 0.77; 95% CI 0.66–0.91) 
(14). The composite kidney endpoint (a sustained decrease 
in the eGFR of ≥50%, dialysis, kidney transplantation or 
a sustained eGFR of <15 mL/min/1.73 m2) was reduced 
by sotagliflozin but failed to reach significance (HR 0.71; 
95% CI 0.46–1.08) with a low number of events limiting 
the power of the trial. The decline in eGFR was also stalled 
by sotagliflozin, while kidney function declined in the 
placebo group (sotagliflozin 0.09 mL/min/1.73 m2/year vs 
placebo −1.31 mL/min/1.73 m2/year) (14).

Finally, the EMPA-KIDNEY trial (12) assessed the effect 
of empagliflozin compared with placebo in over 6600 
patients with CKD with or without diabetes (48). This 
study was also stopped after a prespecified interim review 
identified unequivocal efficacy. At adjudication, treatment 
with empagliflozin was associated with a statistically 
significant reduction in the primary composite outcome 
of kidney disease progression or CV death (HR 0.72; 95% 
CI 0.64 to 0.82; P < 0.001) (49). Reduction in all-cause 
hospitalization (HR 0.86; 95% CI 0.78, 0.95; P = 0.003) 
was also reported. Finally, the rate of decline in eGFR 
was significantly slowed following treatment with 
empagliflozin, with activity in all subgroups including 
participants without severely elevated albuminuria (49).

A recent meta-analysis incorporating all 13 placebo-
controlled trials with SGLT2 inhibitors involving over 
involving 90,000 participants and using a standardized 
outcome definition for kidney disease progression (a 
sustained ≥50% eGFR decline from randomization, ESKD 
or death from kidney disease) concluded that treatment 
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with an SGLT2 inhibitor reduced the risk of kidney disease 
progression by 37% (relative risk 0.63, 95% CI 0.58–0.69) 
(50). In the four CKD trials, positive effects were also 
reported on acute kidney injury, the risk of cardiovascular 
death and hospitalization for HF. Notably, these actions 
appear to be consistent irrespective of diabetes, kidney 
function or the primary cause of kidney disease. However, 
the absolute benefits of SGLT2 inhibitors appear greater 

(and the number needed to treat lower) in participants 
with CKD, and especially those with multimorbidity, due 
to higher risks.

Observations from CVOTs with SGLT2 inhibitors

The kidney-protective effects of SGLT2 inhibitors described 
in trials in patients with CKD are further supported by 

Figure 2
Changes from baseline in eGFR in patients treated 
with SGLT2 inhibitors vs placebo, against a 
background of standard of care, in two RCTs and 
one observational study. Panel A shows the LS 
mean change (s.e.) from baseline in the eGFR in 
patients treated with canagliflozin compared with 
placebo in the CREDENCE trial (data from 11). 
Panel B shows the LS mean change (s.e.) from 
baseline in the eGFR in patients treated with 
dapagliflozin compared with placebo in the 
DAPA-CKD trial (data from 46). Panel C shows the 
eGFR slope before and after initiation with an 
SGLT2 inhibitor or other glucose-lowering drug in 
the CVD-REAL-3 observational study (data from 
47). eGFR, estimated glomerular filtration rate; LS, 
least-squares; RCT, randomized controlled trial; 
s.e., standard error; SGLT2, sodium-glucose 
co-transporter-2; SGLT2i, SGLT2 inhibitor.
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consistent observations from other large trials with these 
agents (Supplementary Table 1). In particular, recent 
CVOTs undertaken in patients with T2D and established 
CVD/high CV risk (EMPA-REG OUTCOME, CANVAS 
Program, DECLARE-TIMI 58 and VERTIS-CV) included 
some individuals with established CKD (14, 51, 52, 53, 54). 
Although kidney outcomes were secondary or exploratory 
in these CVOTs, the subgroup of participants with T2D 
and CKD experienced similar relative improvements in 
kidney outcomes when treated with SGLT2 inhibitors to 
that documented in the CREDENCE study (55). Taken 
together, in the subgroup of participants with T2D 
and established CKD, there was a slowing in the rate of 
decline of kidney function and a reduced incidence of 
dialysis, transplantation or death due to kidney disease 
(relative risk (RR) 0.67; 95% CI 0.52–0.86, P = 0.0019) 
in participants receiving an SGLT2 inhibitor (55, 56). 
In addition, the effects of SGLT2 inhibition on CV and 
kidney outcomes observed in the EMPA-REG OUTCOME 
and CANVAS Program studies were consistent across the 
KDIGO risk categories (56, 57, 58). Although post hoc, 
these findings strongly support the favourable outcomes 
observed in patients with T2D and CKD. In addition, 
these CVOTs also observed a slower decline in eGFR and 
lower incidence of significant kidney function decline in 
participants without CKD (or ‘low risk’ using the KDIGO 
categorization system) (56, 57, 58). Although the absolute 
risk of kidney failure is low in these patients, its impact 
is severe and costly, meaning that primary prevention 
may still be beneficial for their kidneys. Of course, this 
is largely moot in patients with T2D and CVD, such as 
those participating in these trials, where their very high 
CV risk already mandates an aggressive approach to risk 
reduction, including consideration of SGLT2 inhibitors, 
potentially as first-line agents.

Kidney benefits in randomized clinical trials in 
patients with HF

Evidence for the kidney-protective effects of SGLT2 
inhibitors is further supported by consistent benefits 
observed in trials undertaken in patients with established 
HF. Of course, many of these trials included individuals 
with CKD because HF is a risk for CKD and vice versa. In 
addition, in this subgroup with CKD, the greatest absolute 
benefits were observed. For example, the DAPA-HF trial 
tested dapagliflozin, on top of the standard of care, in 
participants with chronic HF with reduced ejection 
fraction (HFrEF) (32). In this study, 41.8% had T2D, and 40% 

had an eGFR < 60 (9). DAPA-HF met its primary outcomes 
with a reduction in CVD death and hospitalization for HF. 
A key secondary outcome (the renal composite of a ≥50% 
sustained decline in eGFR, kidney failure or renal death) 
was modestly but not significantly reduced (0.71; 95% CI 
0.44–1.16) (9). Although only nominally significant, as 
endpoints were exploratory, fewer patients experienced 
an eGFR decline of 30% (HR 0.68; 95% CI 0.58–0.79, 
P < 0.002), 40% (HR 0.54; 95% CI 0.43–0.67, P < 0.002) 
or 50% (HR 0.57; 95% CI 0.40–0.81, P < 0.002) to an 
eGFR < 60 mL/min/1.73 m2 with dapagliflozin compared 
with placebo. In addition, the rate of decline of eGFR 
(between day 14 and day 720) was significantly reduced 
with dapagliflozin treatment compared with placebo, as 
was the risk of the doubling of serum creatinine, a marker 
of kidney decline. Importantly, the effect of dapagliflozin 
on eGFR decline was independent of T2D status.

The EMPEROR-Reduced trial assessed the safety and 
efficacy of empagliflozin in patients with HFrEF, including 
half with diabetes and half with established CKD (33). 
In addition to meeting its primary outcome, the risk 
of the composite renal outcome (time to first event of 
chronic dialysis, renal transplantation or sustained 
reduction of eGFR of sustained ≥40%) was lower with 
empagliflozin treatment compared with placebo in 
patients with HFrEF (HR 0.50; 95% CI 0.32–0.77, P < 0.01) 
in the EMPEROR-Reduced trial (33, 34). This renal benefit 
effect was independent of diabetes status and baseline 
kidney function (33, 34). The rate of eGFR decline was 
also significantly slower with empagliflozin treatment 
compared with placebo (33).

The EMPEROR-Preserved trial assessed the safety 
and efficacy of empagliflozin in patients with HF with 
preserved ejection fraction (HFpEF), again including half 
with diabetes and half with established CKD (35, 59). In 
patients with HFpEF, there was no significant difference 
in the kidney-specific composite outcome (profound 
and sustained decreases in eGFR sustained ≥40% kidney-
replacement therapy or kidney death; HR 0.95; 95% CI 
0.73–1.24) in the EMPEROR-Preserved trial (59). But, again, 
empagliflozin slowed the decline in kidney function (35, 
59). The reason for the different findings in participants 
with reduced or preserved kidney function in their 
respective trials is still unclear but may reflect the different 
kidney outcome definitions used. For example, when 
a consistent kidney outcome is used across all HF trials 
(sustained decreases in eGFR ≥ 50% kidney-replacement 
therapy or kidney death) the outcome of EMPEROR-
Preserved (HR 0.78; 95% CI 0.54–1.13) is similar to that 
observed in DAPA-HF (HR 0.71; 95% CI 0.44–1.16) (60).
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Real-world studies with SGLT2 inhibitors

Results from real-world observational studies and registries 
indicate that the benefits of SGLT2 inhibitor therapy on 
kidney function seen in clinical trials are translatable to 
routine clinical practice. For example, the CVD-REAL-3 
study was a multinational observational cohort study in 
patients with T2D, which compared outcomes in patients 
initiating SGLT2 inhibitors with those receiving other 
glucose-lowering drugs (47). The study showed that SGLT2 
inhibitor was associated with a significant reduction in 
eGFR decline (difference in slope for SGLT2 inhibitors vs 
other glucose-lowering drugs of 1.53 mL/min/1.73 m2, 
95% CI 1.34–1.72, P < 0.0001) and that, during follow-up 
(mean 14.9 months), patients taking SGLT2 inhibitors had 
a significantly lower rate of the composite kidney outcome 
(50% eGFR decline or kidney failure). These results were 
consistent across countries and prespecified subgroups 
(47). The EMPRISE study – an ongoing observational 
study in patients with T2D from two commercial and 
Medicare databases in the USA (2014–2019) – compared 
empagliflozin therapy with dipeptidyl peptidase-4 
(DPP-4) inhibitor and glucagon-like peptide-1 receptor 
agonist (GLP1 RA) therapy, with a CV composite primary 
outcome and a kidney failure secondary outcome (61). 
Interim results (reported as of June 2021) showed that 
the risk of kidney failure was significantly reduced with 
empagliflozin treatment compared with DPP-4-inhibitor 
treatment (62).

Safety and tolerability of SGLT2 inhibitors in 
patients with T2D and CKD

Patients with CKD generally have an increased risk 
of adverse drug reactions (ADRs) when starting new 
medications (63). This often leads to treatment inertia, 
even when the benefits of treatment appear unambiguous. 
Fortunately, SGLT2 inhibitors are generally well tolerated 
in patients with T2D and CKD. Nonetheless, many 
practitioners continue to have safety concerns around 
initiating SGLT2 inhibitors in patients with CKD and 
maintaining therapy below certain levels of kidney 
function. These are addressed below.

SGLT2 inhibitor initiation and eGFR dip

Initiation of an SGLT2 inhibitor is often associated with a 
small ‘dip’ in eGFR of 3–6 mL/min/1.73 m2 (42, 64). This 
limited functional change does not appear to be harmful, 

and the CV and kidney outcomes of those experiencing a 
fall in eGFR appear to be no different to those experiencing 
a more modest change or no change in kidney function 
(65, 66). Moreover, tolerability and the risk of ADRs, 
including acute kidney injury (AKI), are not associated 
with the dip in eGFR following the initiation of an SGLT2 
inhibitor (67). Finally, the dip also appears to be fully 
reversible upon discontinuation of SGLT2 inhibition.

Nonetheless, this dip in the eGFR is more common 
and marginally greater in patients with impaired kidney 
function who are already close to kidney failure. For 
example, the CREDENCE study showed that dips in eGFR 
of over 10% occurred in nearly half of all participants 
following the initiation of canagliflozin (65). Although 
this was not associated with adverse safety outcomes in 
a trial setting, in the real-world caution should still be 
exercised. While it is generally recommended that kidney 
function does not need to be monitored after initiation 
of an SGLT2 inhibitor in most patients with CKD, in 
individuals deemed at risk of AKI, review of hydration 
status and testing of kidney function 4 weeks after 
initiation has been suggested, although, in most cases, 
findings will not result in alteration of SGLT2 inhibition 
or dosing.

Volume depletion

Initial glycosuria associated with SGLT2 inhibition can 
result in water loss and, at the same time, treatment with 
SGLT2 inhibitors reduces the plasma volume. In a small 
number of individuals, this may lead to symptoms of 
volume depletion (including hypotension, syncope and 
dehydration), although these symptoms are often mild 
and manageable with appropriate patient education and 
support (68). Diminished glycosuria in patients with CKD 
reduces polyuria. However, reductions in plasma volume 
and blood pressure are still observed in patients with 
impaired kidney function treated with SGLT2 inhibitors. 
Consequently, clinicians are advised to assess volume 
status prior to treatment initiation with SGLT2 inhibitors 
and to correct hypovolemia (particularly in elderly 
patients, in patients with impaired kidney function or low 
systolic blood pressure and in patients receiving diuretics) 
(69, 70, 71, 72). In most cases, symptoms are transient and 
subside as both plasma and urinary glucose levels fall. 
Starting SGLT2 inhibitors early (e.g. while haemoglobin 
A1c (HbA1c) < 8%) can also improve tolerability by 
limiting heavy glucosuria experienced by patients with 
poor control starting an SGLT2 inhibitor.
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Acute kidney injury

AKI is defined as an abrupt decrease in kidney function 
and is more common in people with CKD, especially those 
with diabetes (73). Following early case reports, drug labels 
for SGLT2 inhibitors include a warning about AKI and 
recommendations to minimize risk. However, data from 
recent randomized clinical trials (RCTs), meta-analyses 
and observational studies suggest that SGLT2 inhibitors do 
not support this risk, even in individuals with moderate-
to-severely impaired kidney function. For example, in the 
DAPA-CKD trial, there was no significant difference in 
renal-related adverse events (AEs) or investigator-reported 
AKI-related serious AEs between treatment groups (46, 
74), although abrupt declines in kidney function were 
fewer in participants receiving dapagliflozin (74). In the 
CREDENCE trial, there was no difference in AKI rates 
between the canagliflozin and placebo treatment groups 
(11). However, when taken together, data from recent CV 
and kidney outcome trials with SGLT2 inhibitors indicate 
that the risk of AKI is certainly not increased and may even 
be reduced by this therapy (RR 0.75; 95% CI 0.66–0.85, 
P < 0.0001) (57). Consistent with this observation, in a 
propensity-matched analysis using real-world data from 
two USA patient cohorts, SGLT2 inhibitors use reduced 
the risk of AKI by between 50 and 60% (unadjusted HRs) 
(75), and in the EMPRISE observational study, treatment 
with empagliflozin was associated with a 46% lower risk of 
AKI requiring dialysis (76). Whether this is a direct effect 
to protect the kidney or the indirect benefits of SGLT2 
inhibition also reducing AKI-precipitant events, such as 
HF/volume decompensation, excessive diuretic use or 
MACE, remains to be established.

Genital mycotic infections

The risk of a genital mycotic infection is approximately 
3–4 times higher in patients taking an SGLT2 inhibitor 
compared with placebo due to the effects of glucose-
containing urine on the perineal flora (77). Mycotic 
infections are most observed in women and some 
uncircumcised men. Although genital infections can be 
distressing, they are easily treated with topical antifungal 
ointments and/or oral medications without requiring 
discontinuation of SGLT2 inhibition (78). In most cases, 
genital infections can also be prevented by genital hygiene 
measures (e.g. washing after voiding and frequent pad 
changes). Early initiation of SGLT2 inhibition in people 
maintaining good control of their glucose levels is also 
advantageous because it reduces glycosuria and the risk 

of infection. For the same reasons, patients with T2D 
and CKD generally have reduced glycosuria, meaning the 
frequency of mycotic infection is lower in this setting, but 
it remains higher with SGLT2 inhibition when compared 
with placebo. Some studies have reported a lower risk of 
genital mycotic infection when SGLT2 inhibitors are used 
in combination with DPP-4 inhibitors, as is often done in 
patients with T2D and CKD. Whether this is through lower 
glucosuria or other mechanisms remains to be established. 
Fournier’s gangrene (an acute necrotic infection of the 
scrotum, penis or perineum) is a rarely reported ADR 
that has been potentially linked to SGLT2 inhibition in 
a small number of case reports. Most of these cases were 
also associated with poor genital hygiene, poor glucose 
control or inadequately treated mycotic infections, also 
contributing to skin barrier breakdown, making any 
causal association with SGLT2 inhibition unclear. In a 
meta-analysis by Staplin et al., severe complications were 
rarely reported, with too few cases of Fournier’s gangrene 
to estimate risk ratios (77). Only one case of Fournier’s 
gangrene occurred in the DAPA-CKD study, and this 
occurred in the placebo group (46).

Urinary tract infections

Patients with diabetes, and especially women with 
diabetes, have an increased risk of urinary tract infections 
(UTIs). For example, in the EMPA-REG OUTCOME trials 
over 30% of women in the placebo group experienced a 
UTI. However, this was not increased by using an SGLT2 
inhibitor. The meta-analysis from Staplin et  al. showed 
that there was only a non-significant 7% increase in the 
risk of UTIs in patients taking SGLT2 inhibitors (77). 
Similarly, in a population-based cohort study of more 
than 200,000 patients, there was no difference in the risk 
of UTI events between patients initiating SGLT2 inhibitors 
compared to those initiating DPP-4 inhibitors or GLP1 RA 
treatment (79). Even in those with a history of recurrent 
UTIs, treatment with dapagliflozin was not associated 
with an increased risk of UTI.

Euglycaemic ketoacidosis

Euglycaemic ketoacidosis is a rare, but potentially life-
threatening, complication of SGLT2 inhibition (80). In 
people with diabetes, SGLT2 inhibitor-induced glycosuria 
modestly increases blood ketone levels by increasing 
the glucagon:insulin ratio. This is similar in magnitude 
to the increase naturally observed in pregnancy and is 
not dangerous. However, as in pregnancy, superimposed 
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stresses, such as starvation, dehydration, sepsis, and 
catabolism, can trigger dysregulated ketone production, 
leading to systemic acidosis. This is different to ‘classical’ 
diabetic ketoacidosis observed in type 1 diabetes, 
where inadequate insulin treatment fails to suppress 
both ketogenesis and blood glucose levels (leading to 
hyperglycaemia and profound dehydration).

Euglycemic ketoacidosis has been a very rare 
occurrence in RCTs. For example, in the DAPA-CKD trial, 
there were no reported cases of euglycemic ketoacidosis. In 
the CREDENCE study, rates of ketoacidosis were very low, 
but numerically higher in patients receiving canagliflozin 
(2.2 vs 0.2 per 1000 patient-years) (11). Overall, in 73,752 
patients across all RCTs included in the meta-analysis by 
Staplin et al., there were 159 ketoacidosis events, with the 
risk of a ketoacidosis event found to be approximately 
doubled in patients treated with an SGLT2 inhibitor 
compared with placebo, albeit off a very low baseline risk 
(77). No episodes of ketoacidosis were observed in people 
without diabetes in large SGLT2 inhibitor CKD or HF trials 
and only one case the recent EMPA-Kidney trial (50).

This risk for ketoacidosis can be simply mitigated by 
not using SGLT2 inhibitors in individuals with type 1 
diabetes and ensuring that insulin doses are not omitted 
in insulin-treated patients with T2D. In addition, patients 
receiving SGLT2 inhibitors should be educated to pause 
therapy if they are not eating and drinking for long periods 
(e.g. they have gastroenteritis or prior to surgery) or they 
are unwell (e.g. they have flu COVID-19 or sepsis) (80, 81, 
82, 83). Similarly, patients on SGLT2 inhibitors should 
be discouraged from initiation of ketogenic diets such 
as intermittent fasting or low-carbohydrate alternatives 
without adequate supervision. Patients undergoing 
major surgery should withhold SGLT2 inhibitor 
treatment preoperatively, and then only recommence 
postoperatively or post procedure once normal eating and 
drinking have been re-established. Studies are ongoing 
in patients admitted with acute coronary syndrome or 
acute HF to assess both the safety and efficacy of SGLT2 
inhibition in this challenging setting.

Electrolyte disturbance

Many people with T2D and CKD experience 
electrolyte disturbances, including hyperkalaemia, 
hyperphosphatemia, hypocalcaemia and hyponatremia. 
Importantly, the incidence of these dysfunctional 
changes is not increased following treatment with SGLT2 
inhibitors. In the CREDENCE study, a reduced incidence 
of hyperkalaemia has been reported (HR 0.78, 95% CI 

0.64–0.95, P = 0.014) (84). Indeed, a reduction in the 
incidence of serious hyperkalaemia (potassium > 6.0 
mmol/L) of approximately 15% with SGLT2 inhibitors 
has been confirmed in a large individual participant data 
meta-analysis of people with T2D at high CV risk and/or 
with CKD (85).

Severe hypoglycaemia

SGLT2 inhibitors lower blood glucose levels by causing 
urinary wasting of glucose. This mechanism is dependent 
on blood glucose levels and kidney function such that, if 
blood glucose levels return to the normal range, glycosuria 
is minimal. For this reason, these agents do not cause 
hypoglycaemia as monotherapy. In fact, the meta-analysis 
by Staplin et al. showed that the use of SGLT2 inhibitors 
actually reduced the relative risk of severe hypoglycaemia 
by 13% compared with placebo (77). This is partly due 
to the avoidance of hypoglycaemia-causing medications 
(e.g. insulin, sulphonylureas) achieved through glucose 
lowering with an SGLT2 inhibitor in people with T2D. It 
is advisable for clinicians to monitor glucose levels when 
SGLT2 inhibitors are given in combination with insulin, 
sulphonylureas or glinides, and, when necessary, reduce 
their doses. In such cases, only a slight adjustment is 
usually required, and patients should be reminded never 
to discontinue insulin while taking an SGLT2 inhibitor 
without first consulting their care provider. However, as the 
glycaemic effect diminishes as kidney function declines, in 
most patients with CKD stage 3 (eGFR < 60 mL/min/1.73 
m2), it is seldom necessary to alter background glucose-
lowering therapies when adding an SGLT2 inhibitor. Non-
diabetic individuals treated with an SGLT2 inhibitor do 
not experience hypoglycaemia for the same reasons, and 
similarly, hypoglycaemia is not an issue for people with 
benign familial glycosuria; a genetic condition due to a 
mutation in SGLT2.

Amputations

Foot disease in people with diabetes increases the risk of 
ulceration and lower-limb amputation. This risk is highest 
in people with T2D and CKD because the same processes 
that damage the kidneys also damage the nerves and 
vasculature supplying the feet. In the CANVAS Program, 
it was reported that the risk of lower-limb amputation was 
increased with canagliflozin treatment compared with 
placebo, especially in the first few months of treatment 
(30). The subsequent CREDENCE trial using the same 
agent showed no effect of canagliflozin, despite the higher 
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risk of patients with CKD, and a pooled analysis of patient-
level data from the CANVAS Program and CREDENCE 
trials concluded that the CANVAS Program amputation 
finding was most likely a chance effect (86). However, 
individuals with established foot disease were excluded 
from the CREDENCE trial due to a protocol amendment 
during the trial making interpretation problematic. None 
of the other SGLT2 inhibitors has reported an increased 
risk for amputation or other foot problems in their CVOTs, 
HF or kidney RCTs, making it unlikely that there is any 
drug class risk.

Bone fractures

Bone fractures are a common and serious condition in older 
adults. Treatment of adults PPAR gamma agonists (e.g. 
pioglitazone) is associated with a significantly increased 
risk of major bone fractures. In the CANVAS Program, a 
potential signal for fracture risk was observed early in the 
study (87). However, this was likely a chance finding, and 
other trials with canagliflozin (e.g. CREDENCE) as well 
as a comprehensive systematic analysis of studies with 
other SGLT2 inhibitors, suggest that SGLT2 inhibitors are 
not associated with an increased risk of fracture (50). This 
is further supported by real-world data (88). Although 
mineral and bone disorder in advanced CKD is associated 
with an increased risk of bone fracture, recent studies of 
treatment of patients with CKD using SGLT2 inhibitors 
have not been with increased fracture risk.

SGLT2 inhibitor dosing in patients with CKD

When SGLT2 inhibitors were first developed, their use 
was contraindicated in patients with impaired kidney 
function. This was because of the attenuated glucosuria 
in this setting and limited or no effects on blood glucose 
levels. Obviously, avoidance of SGLT2 inhibition in this 
setting has changed with the trial data detailed above 
demonstrating clear benefits for both kidney and cardiac 
outcomes in people with CKD, regardless of diabetes 
status. Currently, most guidelines recommend SGLT2 
initiation down to an eGFR of 30 mL/min/1.73 m2 (15, 26). 
The US Food and Drug Administration now advises that 
dapagliflozin can be initiated down to an eGFR of >25 mL/
min/1.73 m2 (69). Recent European guidelines have gone 
even lower and recommend dapagliflozin can be safely 
initiated down to an eGFR of 20 mL/min/1.73 m2 (15, 26). 
Should the eGFR level fall below these thresholds during 
therapy, treatment can continue, but new patients should 
not initiate SGLT2 inhibition below these eGFR levels 

at this time (mostly due to a lack of safety data in this 
setting). Future changes to KDIGO guidelines are likely to 
incorporate recommendations for lower eGFR limits for 
SGLT2 inhibitor use in CKD, with or without diabetes.

Future directions

SGLT2 inhibitors have rapidly become first-line agents for 
the management of T2D complicated by CVD, by or CKD. 
However, for most of these patients, it is too late to restore 
normal organ function. The next important question is 
whether the early initiation of SGLT2 inhibitors will be 
able to prevent or slow the loss of function in the first 
place. Certainly, de novo admission for HF is reduced in 
patients using SGLT2 inhibitors. Future research is likely 
to investigate whether SGLT2 inhibitors can be used to 
prevent the development of CKD in people with diabetes 
(89, 90, 91). Mechanistically, the drivers of nephron 
dropout are similar in people both with and without CKD, 
although amplified in the latter due to reduced nephron 
numbers increasing nephron stress/vulnerability. 
Observational data from CVOTs suggest that patients 
without CKD not only experience a slower rate of decline 
in kidney function and a reduction in new-onset elevation 
in albuminuria (37). Indeed, the early initiation of SGLT2 
inhibitors may offer the greatest kidney benefits in the 
long term (37, 92). Such findings strengthen the push to 
consider SGLT2 inhibitors as first-line treatment along 
with metformin for the management of all people with 
T2D if only to protect their kidneys.

Yet, despite these clear data, SGLT2 inhibitors remain 
seriously underutilized in clinical practice. Less than 10% 
of those with T2D and CKD are receiving SGLT2 inhibitors 
and even fewer in those with established CVD (93, 94). 
At the same time, at least ten times that number are 
receiving RAAS blockade and statin therapy. In the future, 
multifactorial therapy in patients with T2D will likely 
consider SGLT2 inhibition as an equal or more important 
part of preventing complications in diabetes, thereby 
reducing the progression of cardiorenal disease.
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