154 research outputs found

    Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes

    Get PDF
    A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (<99% similarity in the 16S rRNA gene sequence) was also observed in the termite nests examined. Each type of termite nest housed >20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10−4–1.25 mg mL−1) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs

    Control Of Hydrogen Sulfide Emissionsusing Autotrophic Denitrificationlandfill Biocovers

    Get PDF
    Hydrogen sulfide (H2S), a major odorous component emitted from construction and demolition debris landfills, has received increasing attention. Besides its unpleasant odor, long-term exposure to a very low concentration of H2S can cause a public health issue. Although cover materials such as soil and compost are recommended to be used routinely to control an odor problem from the landfills, the problem still remains. Autotrophic denitrification may have environmental applications including treatment of water, groundwater, wastewater or gaseous streams contaminated with sulfur and/or nitrogen compounds. However, there have been no studies reported in the literature on H2S removal using autotrophic denitrification from landfills. This study, therefore, investigated the application of autotrophic denitrification incorporated into landfill covers in order to evaluate the feasibility of controlling H2S emissions generated from landfills. Research was investigated by two techniques, microcosm and laboratory-scale column studies. The microcosm experiments were conducted to evaluate the kinetics of autotrophic denitrification in various cover materials with H2S-nitrate as electron donor-acceptor couple. Cover materials including soil, compost and sand were tested and nitrate was added. Based on the microcosm study results, the addition of nitrate into soil and compost can stimulate indigenous autotrophic denitrifying bacteria which are capable of H2S oxidation biologically under anoxic conditions. Results also demonstrated that some amount of H2S can be removed physically and chemically by soil or compost. There was no H2S removal observed in sand microcosms. Rapid H2S oxidation to sulfate was achieved, especially in soil. Zero-order kinetics described the H2S oxidation rate in soil and compost microcosms. The rates of sulfide oxidation under autotrophic denitrification in soil and compost were 2.57 mg H2S/d-g dry soil and 0.17 mg H2S/d-g dry compost, respectively. To further explore H2S removal in a landfill biocover, two sets of column experiments were run. The first set of columns contained seven cm of soil. The autotrophic column was prepared with 1.94 mg KNO3/g dry soil; an identical control column was prepared without nitrate. A gas stream was introduced to the columns with a H2S concentration of 930 ppm. The second set contained seven cm of soil, with both an autotrophic (0.499 mg KNO3/g dry soil) and a control column. Influent H2S concentration was 140 ppm for the second set. Column studies supported the results of microcosm studies; removal of H2S was observed in all columns due to the capacity for soil to absorb H2S, however autotrophic columns removed significantly more. The higher concentration of H2S resulted in partial oxidation to elemental sulfur, while sulfate was found at levels predicted by stoichiometric relationships at the lower concentration. H2S oxidation in the column with higher loading was found to follow zero-order kinetics. The rate of H2S oxidation was 0.46 mg H2S removed/d-g dry soil. Economic comparison of cover systems including autotrophic denitrification, soil amended with lime, fine concrete, and compost covers were analyzed. Based on a case-study landfill area of 0.04 km2, the estimated H2S emissions of 80,900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer, lime, concrete and compost), autotrophic denitrification cover was determined to be the most cost-effective method for controlling H2S emissions from landfills

    Nonomuraea monospora sp. nov., an actinomycete isolated from cave soil in Thailand, and emended description of the genus Nonomuraea

    Get PDF
    A novel actinomycete, designated strain PT708T, was isolated from cave soil collected in Pha Tup Cave Forest Park, Nan province, Thailand. It produced compounds with antimicrobial and anticancer activities. Its chemotaxonomic properties were consistent with those of members of the genus Nonomuraea . The major menaquinone was MK-9(H4), with minor amounts of MK-9(H6), MK-9(H2), MK-10(H2) and MK-8(H4). The polar lipid profile contained phosphatidylmonomethylethanolamine, diphosphatidylglycerol, hydroxy-phosphatidylmonomethylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. The major fatty acids were iso-C16 : 0, 10-methyl C17 : 0, C16 : 0 and C17 : 1ω6c. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PT708T belonged to the genus Nonomuraea and was most closely related to Nonomuraea rhizophila YIM 67092T (98.50 % sequence similarity) and Nonomuraea rosea GW 12687T (98.30 %). The genomic DNA G+C content of strain PT708T was 73.3 mol%. Unlike the recognized members of the genus Nonomuraea , the novel strain formed single spores at the tips of aerial hyphae. Based on the phenotypic, phylogenetic and genotypic evidence, strain PT708T represents a novel species of the genus Nonomuraea , for which the name Nonomuraea monospora sp. nov. is proposed. The type strain is PT708T ( = TISTR 1910T = JCM 16114T)

    Mycelium-enhanced bacterial degradation of organic pollutants under bioavailability restrictions

    Get PDF
    This work examines the role of mycelia in enhancing the degradation by attached bacteria of organic pollutants that have poor bioavailability. Two oomycetes, Pythium oligandrum and Pythium aphanidermatum, were selected as producers of mycelial networks, while Mycobacterium gilvum VM552 served as a model polycyclic aromatic hydrocarbon (PAH)-degrading bacterium. The experiments consisted of bacterial cultures exposed to a non-disturbed non-aqueous phase liquid (NAPL) layer containing a heavy fuel spiked with 14C-labeled phenanthrene that were incubated in the presence or absence of the mycelia of the oomycetes in both shaking and static conditions. At the end of the incubation, the changes in the total alkane and PAH contents in the NAPL residue were quantified. The results revealed that with shaking and the absence of mycelia, the strain VM552 grew by utilizing the bulk of alkanes and PAHs in the fuel; however, biofilm formation was incipient and phenanthrene was mineralized following zero-order kinetics, due to bioavailability limitation. The addition of mycelia favored biofilm formation and dramatically enhanced the mineralization of phenanthrene, up to 30 times greater than the rate without mycelia, possibly by providing a physical support to bacterial colonization and by supplying nutrients at the NAPL/water interface. The results in the static condition were very different because the bacterial strain alone degraded phenanthrene with sigmoidal kinetics but could not degrade alkanes or the bulk of PAHs. We suggest that bacteria/oomycete interactions should be considered not only in the design of new inoculants in bioremediation, but also in biodegradation assessments of chemicals present in natural environments

    Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    Get PDF
    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community

    Mobilization of Pollutant-Degrading Bacteria by Eukaryotic Zoospores

    Get PDF
    This study was supported by the Spanish Ministry of Science and Innovation (CGL2010-22068-C02-01 and CGL2013- 44554-R), the Andalusian Government (RNM 2337), and the CSIC JAE Program (RS). PvW has funding support from the BBSRC and NERC. Thanks are also given to Sara Hosseini of the Uppsala BioCenter, SLU, Uppsala, Sweden for a useful discussion on oomycete zoospores.Peer reviewedPostprin

    Exploring the Relationship Between Entrepreneurial Orientation, Innovation and Financial Performance: The Mediating Role of Absorptive Capacity and Technological Innovation Capability

    Get PDF
    The purpose of this research was to study the relationship between entrepreneurial orientation, innovation and financial performance, through the mediating role of absorptive capacity and technological innovation capability. The study used a quantitative research method to collect data via questionnaire from the executive officers of 156 startup organizations in Thailand. Respondents were selected using a simple random sampling method and Structural Equation Modeling (SEM). The results demonstrate that entrepreneurship orientation is a variable directly and significantly correlated with innovation and financial performance. However, it was found that entrepreneurship orientation does not correlate indirectly with innovation or financial performance via the mediation of absorptive capacity and technological innovation capacity. The results of the study can enable startup businesses in Thailand to create and pay attention to the behavior of entrepreneurship orientation to improve the organization’s innovation and financial performance

    Bioactivities and genome insights of a thermotolerant antibiotics-producing Streptomyces sp. TM32 reveal its potentials for novel drug discovery

    Get PDF
    A way to defeat antimicrobial resistance (AMR) crisis is to supply novel drugs to the pharmaceutical industry. This effort leads to a global call for seeking the beneficial microbes from underexplored habitats. To support this call, we isolated Streptomyces sp. TM32 from the rhizosphere soil of a medicinal plant, turmeric (Curcuma longa L.). TM32 exhibited strong antimicrobial activities against both human and plant pathogens, including an AMR pathogen, Staphylococcus haemolyticus MR‐CoNS. Surprisingly, such antimicrobial results of TM32's autoclaved crude extract remained the same. Based on the genome data analysis, TM32 belongs to the same genomic species with Streptomyces sioyaensis DSM 40032T, supported by the relatively high‐average nucleotide identity values (ANIb: 96.80% and OrthoANIu: 97.14%) and in silico DNA–DNA relatedness value of 75.40%. Importantly, the gene annotation analyses revealed that TM32's genome contains various genes encoding the biosynthesis of either known or unknown antibiotics and some metabolites involved in plant growth‐promoting traits. However, bioactivities and genome data comparison of TM32 and DSM 40032T showed a set of apparent differences, for example, antimicrobial potentials, genome size, number, and occurrence of coding DNA sequences in the chromosomes. These findings suggest that TM32 is a new strain of S. sioyaensis and serves as an emerging source for further discovery of valuable and novel bioactive compounds

    A case report of peritoneal dialysis for management of acute kidney injury caused by Russell’s viper envenomation in a dog

    Get PDF
    This report describes a five-year-old dog who had been bitten by a Russell’s viper. The patient presented clinical signs of anorexia, vomiting, lethargy, and anuria. Collectively with the laboratory test results of azotemia and hyperkalemia, acute kidney injury was diagnosed. Peritoneal dialysis (PD) was instigated when the azotemia became worse and anuria persisted, despite aggressive medical and fluid therapy. After 14 days of PD, the anuria was resolved, and the patient was discharged 7 days later. At the end of the last dialysis cycle, there was a significant reduction in the severity of the azotemia, and the serum hyperkalemia had returned to normal. One month after PD, the patient no longer had any abnormal clinical signs. Both the patient’s serum blood urea nitrogen level and creatinine levels returned to within the normal limit. PD proved to be an effective management of acute kidney injury in Russell’s viper envenomation in the reported dog. This report also describes a detailed procedure of PD which can be instigated in any veterinary practic

    Herbicide-tolerant endophytic bacteria of rice plants as the biopriming agents for fertility recovery and disease suppression of unhealthy rice seeds

    Get PDF
    Background: Dirty panicle disease (DPD) caused by several fungal phytopathogens results in damage and depreciation of rice seeds. Unhealthy rice seeds with DPD are potent reservoirs of pathogens and unable to be used as seed stock as they can spread the disease in the paddy fields leading to the severe loss of rice yield and quality. In this study, we aim to search for beneficial endophytes of commercially cultivated rice plants and utilize them as biostimulants in seed biopriming for fertility recovery and disease suppression of unhealthy rice seeds. Results: Forty-three bacterial endophytes were isolated from rice plants grown in the herbicide-treated paddy fields. Five isolates of these endophytes belonging to the genus Bacillus show excellent antifungal activity against fungal pathogens of DPD. Based on germination tests, biopriming unhealthy rice seeds by soaking in bacterial suspensions for 9 or 12 h was optimal as evidenced by the lowest disease incidence and longer shoot and root lengths of seedlings germinated, compared with controls made of non-treated or hydroprimed healthy and unhealthy seeds. Pot experiments were carried out to evaluate the impact of seed biopriming, in which the percentage of healthy rice yield produced by rice plants emerging from bioprimed seeds was not significantly different, compared to the controls originating respectively from non-treated healthy seeds and chemical fungicide-treated unhealthy seeds. Conclusion: Biopriming of unhealthy rice seeds with herbicide-tolerant endophytic bacteria could recover seed fertility and protect the full life cycle of emerging rice plants from fungal pests. With our findings, seed biopriming is a straightforward approach that farmers can apply to recover unhealthy rice seed stock, which enables them to reduce the cost and use of agrochemicals in the commercial production of rice and to promote green technology in sustainable agriculture
    corecore