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ABSTRACT 

Hydrogen sulfide (H2S), a major odorous component emitted from construction and 

demolition debris landfills, has received increasing attention. Besides its unpleasant odor, long-

term exposure to a very low concentration of H2S can cause a public health issue. Although 

cover materials such as soil and compost are recommended to be used routinely to control an 

odor problem from the landfills, the problem still remains. Autotrophic denitrification may have 

environmental applications including treatment of water, groundwater, wastewater or gaseous 

streams contaminated with sulfur and/or nitrogen compounds. However, there have been no 

studies reported in the literature on H2S removal using autotrophic denitrification from landfills. 

This study, therefore, investigated the application of autotrophic denitrification incorporated into 

landfill covers in order to evaluate the feasibility of controlling H2S emissions generated from 

landfills.  

Research was investigated by two techniques, microcosm and laboratory-scale column 

studies. The microcosm experiments were conducted to evaluate the kinetics of autotrophic 

denitrification in various cover materials with H2S-nitrate as electron donor-acceptor couple. 

Cover materials including soil, compost and sand were tested and nitrate was added. Based on 

the microcosm study results, the addition of nitrate into soil and compost can stimulate 

indigenous autotrophic denitrifying bacteria which are capable of H2S oxidation biologically 

under anoxic conditions. Results also demonstrated that some amount of H2S can be removed 

physically and chemically by soil or compost. There was no H2S removal observed in sand 

microcosms. Rapid H2S oxidation to sulfate was achieved, especially in soil. Zero-order kinetics 

described the H2S oxidation rate in soil and compost microcosms. The rates of sulfide oxidation 
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under autotrophic denitrification in soil and compost were 2.57 mg H2S/d-g dry soil and 0.17 mg 

H2S/d-g dry compost, respectively.  

To further explore H2S removal in a landfill biocover, two sets of column experiments 

were run. The first set of columns contained seven cm of soil. The autotrophic column was 

prepared with 1.94 mg KNO3/g dry soil; an identical control column was prepared without 

nitrate. A gas stream was introduced to the columns with a H2S concentration of 930 ppm. The 

second set contained seven cm of soil, with both an autotrophic (0.499 mg KNO3/g dry soil) and 

a control column. Influent H2S concentration was 140 ppm for the second set. Column studies 

supported the results of microcosm studies; removal of H2S was observed in all columns due to 

the capacity for soil to absorb H2S, however autotrophic columns removed significantly more. 

The higher concentration of H2S resulted in partial oxidation to elemental sulfur, while sulfate 

was found at levels predicted by stoichiometric relationships at the lower concentration. H2S 

oxidation in the column with higher loading was found to follow zero-order kinetics. The rate of 

H2S oxidation was 0.46 mg H2S removed/d-g dry soil. 

Economic comparison of cover systems including autotrophic denitrification, soil 

amended with lime, fine concrete, and compost covers were analyzed. Based on a case-study 

landfill area of 0.04 km
2
, the estimated H2S emissions of 80,900 kg over the 15-year period and 

costs of active cover system components (ammonium nitrate fertilizer, lime, concrete and 

compost), autotrophic denitrification cover was determined to be the most cost-effective method 

for controlling H2S emissions from landfills. 
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CHAPTER 1CHAPTER 1 

INTRODUCTION 

Background Information 

Over the past several years, construction and demolition (C&D) debris landfills and 

landfills that have been using C&D residuals and fines as daily cover have received a large 

number of odor complaints from nearby residents (Townsend et al., 2000). These odor 

complaints are known to be associated with the emissions of hydrogen sulfide (H2S) by an easily 

recognized smell of rotten eggs. The emission of H2S from these facilities results from the 

biological degradation of gypsum (CaSO42H2O) in drywall, a primary component of C&D 

debris. When the drywall comes in contact with water, sulfate and calcium are released into 

solution. Under anaerobic landfill conditions, a group of bacteria known as sulfate-reducing 

bacteria (SRB) utilize sulfate as an electron acceptor and produce H2S as a byproduct (Reinhart 

et al., 2004). It has been reported that C&D debris can generate gas with H2S concentrations as 

high as 20,000-30,000 ppm (Flynn, 1998). In Florida the concentrations of H2S produced at 

C&D debris landfills were found to vary dramatically from landfill to landfill (Lee et al., 2006). 

H2S concentrations in ambient air at the surface of the landfills ranged from below 3 ppb to 

greater than 50 ppm and H2S concentrations in landfill gas ranged from below 3 ppb to 12,000 

ppm. 

People can smell H2S at low levels in the air, ranging in concentrations from 0.0005 to 

0.3 ppm (ATSDR, 2006). However, at high concentrations (100 ppm or above) a person may 

lose their ability to smell H2S (ATSDR, 2006). Moreover, levels of H2S above 1000 ppm in a 

breathing zone can rapidly lead to loss of consciousness and death (Bogner and Heguy, 2004). 
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These facts can make H2S generated from landfills a major environmental and public health 

issue. 

Collected gas from sulfur-containing waste can be treated effectively using 

physicochemical and biological processes such as activated carbon adsorption, chemical and 

biological scrubbing, ozone oxidation, incineration, air stripping, and biofiltration (Ferguson, 

1975; Yang and Allen, 1994; Degorce-Dumas et al., 1997; Nishimura and Yoda, 1997). 

However, in the case of C&D landfills, where gas collection systems are not normally required, 

the generated H2S is typically not controlled and the number of treatment processes to control 

H2S emissions in-situ is limited. An attractive alternative may be to use chemically or 

biologically active landfill covers since landfill cover is usually required at C&D landfills to 

control litter, odors, and fires. A few studies using various types of cover materials to attenuate 

H2S emissions have been done both at the laboratory (Plaza et al., 2006) and field (Xu, 2005) 

scale. The results demonstrated that H2S emissions can be effectively reduced using compost, 

fine concrete, and lime-amended sandy soils as cover materials. The reduction of H2S emissions 

was hypothesized to result from the biological oxidation in the compost pilot test or reaction with 

alkaline components of fine concrete and lime-amended sandy-soil producing sulfide minerals.  

Another attractive alternative to control H2S gas emissions produced from landfills is to 

incorporate a bioreactive layer into the design of a landfill cover. Under aerobic landfill cover 

conditions, considerable research has been performed using microbiological methane oxidation 

to mitigate methane emissions and trace gases from municipal solid waste (MSW) landfills 

(Hilger and Humer, 2003; Abichou et al., 2004; Barlaz et al., 2004; Huber-Humer and Lechner, 

2005; Scheutz et al., 2005). Microbiological sulfur-oxidation under aerobic landfill cover 
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conditions to reduce H2S produced from landfills could also be encouraged. Such mechanisms 

are well understood from the significant amount of research performed on H2S gas removal using 

biofiltration (Yang and Allen, 1994; Chung et al., 1996; Degorce-Dumas et al., 1997; Cho et al., 

2000; Morgan-Sagastume et al., 2003; Oyarzun et al., 2003).  

Recently, autotrophic denitrification has been observed during nitrate removal in 

wastewaters containing high sulfur concentrations or reduced sulfur sources (Darbi et al., 2002; 

Oh et al., 2002; Lampe and Zhang, 2005; Wang et al., 2005). With this process, sulfur-oxidizing 

bacteria (SOB) such as Thiobacillus denitrificans and Thiomicrospira denitrificans can remove 

nitrate using an inorganic sulfur source such as H2S, elemental sulfur (S
0
), thiosulfate (S2O3

2
)
 

tetrathionate (S4O6
2-

), and sulfite (SO3
2-

) as the electron donor while reducing nitrate to nitrogen 

gas. Elemental sulfur or reduced sulfur compounds are oxidized to produce sulfate (Lampe and 

Zhang, 2005; Onay and Pohland, 2001). In several recent studies, this process has been adopted 

for odor control in wastewater, oil fields, and the petrochemical industry (Telang et al., 1997; 

Jenneman et al., 1999; Vaiopoulou et al., 2005; Mathioudakis et al., 2006). The results have 

proved that the addition of nitrate as a terminal electron acceptor led to preferential autotrophic 

denitrification with sulfide as an electron donor. Additionally, in some studies (Onay and 

Pohland, 2001; Vigeron et al., 2006; and Berge et al., 2006) when nitrate was injected into 

reactors containing stabilized solid waste, autotrophic denitrification was observed, leading to 

sulfate production. However, there have been no studies reported in the literature on H2S 

removal using autotrophic denitrification landfill biocovers. This study, therefore, has applied the 

concept of autotrophic denitrification in landfill covers in order to explore an alternative 

approach to control H2S emissions from landfills.  
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From previous studies as mentioned above, it is hypothesized that utilizing the 

autotrophic denitrification process under anoxic landfill cover conditions by adding nitrate as an 

electron acceptor and using H2S as an electron donor may create a barrier to minimize H2S 

emissions and remove H2S generated from landfills. This barrier may prove to have cost benefits 

when compared to other covers. This biocover could be created as simply as providing fertilizer 

and moisture addition through cover irrigation, therefore, this autotrophic denitrification landfill 

biocover may offer an attractive alternative to control emission of H2S generated from landfills.  

Research Objectives 

The objectives of this research include: 

1. Evaluate the capability of sand, soil, and compost as landfill cover materials to control 

H2S emissions under autotrophic denitrification conditions and determine the kinetics of 

autotrophic denitrification with H2S-nitrate as the electron donor-acceptor couple by 

using a microcosm technique. 

2. Simulate an autotrophic landfill soil biocover and investigate the microbial activity 

involved in autotrophic denitrification landfill soil biocovers. 

3. Evaluate the costs and benefits of an autotrophic denitrification landfill biocover and 

compare them to other H2S control methods. 

Dissertation Organization 

This dissertation is organized in five chapters. Chapter 2 describes microcosm 

experiments conducted to evaluate the feasibility of using soil, compost and sand as landfill 
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cover materials for controlling H2S emissions under autotrophic denitrification. Chapter 3 

describes column experiments conducted to simulate an autotrophic denitrification landfill soil 

cover for controlling gaseous H2S emitted. Chapter 4 presents cost-benefit comparisons of an 

autotrotrophic denitrificationn landfill cover to other H2S control methods. Chapter 5 presents 

the conclusions and recommendation of this dissertation. 
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CHAPTER 2CHAPTER 2 

CONTROL OF H2S EMISSIONS USING AUTOTROPHIC 

DENITRIFICATION LANDFILL BIOCOVERS: MICROCOSM STUDIES 

Introduction 

In recent years, hydrogen sulfide (H2S) emissions from construction and demolition 

(C&D) debris landfills have received a high degree of attention due to odor and health 

complaints from people living near the landfills (Townsend et al., 2000). Among the many 

compounds emitted from these facilities, H2S has been identified as a principal odorous 

component (Flynn, 1998; Lee et al., 2006). The emission of H2S generated from these facilities 

has long been known to be a consequence of biological degradation of discarded drywall, a 

major C&D debris component. Drywall is composed of a core of gypsum (CaSO42H2O) covered 

with paper facing and backing (Gypsum Association, 1992). When the drywall comes in contact 

with water, sulfate and calcium are released into solution. Under anaerobic landfill conditions, a 

group of bacteria known as sulfate-reducing bacteria (SRB) utilizes the sulfate as an electron 

acceptor and produces H2S as a byproduct (Reinhart et al., 2004). It has been reported that C&D 

debris can generate gas with H2S concentrations as high as 20,000-30,000 ppm (Flynn, 1998). 

Concentrations of H2S produced at C&D debris landfills were found to vary dramatically from 

landfill to landfill by Lee et al. (2006) who reported that H2S concentrations in ambient air at the 

landfill surface ranged from below 3 ppb to more than 50 ppm and H2S concentrations in landfill 

gas ranged from below 3 ppb to 12,000 ppm. 
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H2S has the characteristic odor of rotten eggs. People can smell H2S at low levels in the 

air, ranging in concentration from 0.5 to 300 ppb. H2S not only causes odor problems but also, at 

higher concentrations, may adversely affect human health following chronic and acute exposure. 

Prolonged exposure to relatively low concentrations of H2S may affect memory, coordination, 

eyes and breathing. As concentrations increase beyond 100 ppm, a person may lose their ability 

to detect H2S (ATSDR, 2006). Moreover, levels of H2S above 1,000 ppm in a breathing zone can 

rapidly lead to loss of consciousness and death (Heguy and Bogner, 2005). These facts make H2S 

generation from landfills a major environmental and public health issue. 

Collected gas from sulfur-containing waste can be treated effectively using 

physicochemical and biological processes, e.g. activated carbon adsorption, chemical and 

biological scrubbing, ozone oxidation, incineration, air stripping, and biofiltration (Ferguson, 

1975; Yang and Allen, 1994; Degorce-Dumas et al., 1997; Nishimura and Yoda, 1997). 

However, in the case of C&D landfills, where gas collection systems are not normally required, 

the generated H2S is typically not controlled and the number of treatment processes to control 

H2S emissions in-situ is limited. An attractive alternative may be to use chemically or 

biologically active landfill covers since landfill cover is usually required at C&D landfills to 

control litter, odors, and fires. A few studies using various types of cover materials to attenuate 

H2S emissions have been done both at the laboratory (Plaza et al., 2006) and field (Xu, 2005) 

scale. The results demonstrated that H2S emissions can be effectively reduced using compost, 

fine concrete, and lime-amended sandy soils as cover materials. The reduction of H2S emissions 

was hypothesized to result from the biological oxidation in the compost pilot test or reaction with 

alkaline components of fine concrete and lime-amended sandy-soil producing sulfide minerals.  
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Another attractive alternative to control H2S gas emissions produced from landfills is to 

incorporate a bioreactive layer into the design of a landfill cover. Under aerobic landfill cover 

conditions, considerable research has been performed using microbiological methane oxidation 

to mitigate methane emissions and trace gases from municipal solid waste (MSW) landfills 

(Hilger and Humer, 2003; Abichou et al., 2004; Barlaz et al., 2004; Huber-Humer, 2005; Scheutz 

et al., 2005). Microbiological sulfur-oxidation under aerobic landfill cover conditions to reduce 

H2S produced from landfills could also be encouraged. Such mechanisms are well understood 

from the significant amount of research performed on H2S gas removal using biofiltration (Yang 

and Allen, 1994; Chung et al., 1996; Degorce-Dumas et al., 1997; Cho et al., 2000; Morgan-

Sagastume et al., 2003; Oyarzun et al., 2003).  

Recently, autotrophic denitrification has been observed during nitrate removal in 

wastewaters containing high sulfur concentrations or reduced sulfur sources (Darbi et al., 2002; 

Oh et al., 2002; Lampe and Zhang, 2005; Wang et al., 2005). With this process, sulfur-oxidizing 

bacteria (SOB) such as Thiobacillus denitrificans and Thiomicrospira denitrificans can remove 

nitrate using an inorganic sulfur source such as H2S, elemental sulfur (S
0
), thiosulfate (S2O3

2
)
 

tetrathionate (S4O6
2-

), and sulfite (SO3
2-

) as the electron donor while reducing nitrate to nitrogen 

gas. Elemental sulfur or reduced sulfur compounds are oxidized to produce sulfate (Lampe and 

Zhang, 2005; Onay and Pohland, 2001). In several recent studies, this process has been adopted 

for odor control in wastewater, oil fields, and the petrochemical industry (Telang et al., 1997; 

Jenneman et al., 1999; Vaiopoulou et al., 2005; Mathioudakis et al., 2006). The results have 

proven that the addition of nitrate as a terminal electron acceptor led to preferential autotrophic 

denitrification with sulfide as an electron donor. Additionally, in some studies (Onay and 
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Pohland, 2001; Vigeron et al., 2006; and Berge et al., 2006) when nitrate was injected into 

reactors containing stabilized solid waste, autotrophic denitrification was observed, leading to 

sulfate production. However, there have been no studies reported in the literature on H2S 

removal using autotrophic denitrification landfill biocovers. This study, therefore, has applied the 

concept of autotrophic denitrification in landfill covers in order to offer a promising alternative 

approach to control H2S emissions from landfills. Autotrophic denitrification involved with H2S 

removal can be described by Equation 2-1: 

 H2S + 1.6NO3
-
   rsdenitrifiecAutotrophi

SO4
2-

 + 0.8N2 + 0.8H2O + 0.4H
+
  (2-1) 

The objectives of the present study were to evaluate the capability of sand, soil, and 

compost as landfill cover materials to control H2S emissions under autotrophic denitrification 

conditions and determine the kinetics of autotrophic denitrification with H2S-nitrate as the 

electron donor-acceptor couple. A microcosm technique was used to prove the concept of 

autotrophic denitrification in landfill biocovers. Microcosms allowed experimental control of the 

process even if they did not simulate the normally unsaturated cover system.  

Experimental Materials and Methods 

Cover Materials Used 

Three types of cover materials were investigated in this experiment: sand, soil, and 

compost. Concrete, sand and topsoil (soil blended with woodchips) were purchased in Orange 

County, Florida, USA. Compost was obtained from a yard waste composting facility located in 
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Orange County, Florida, USA. Soil and compost used in this investigation were prepared by 

passing through a no. 10 sieve (2-mm opening). Sand (particle size less than 2 mm) was used as 

received.  

Microcosm Operation 

Three sets of microcosm experiments containing sand, soil, and compost were conducted 

in 285-mL graduated glass serum bottles (Wheaton
®

). In order to demonstrate the reproducibility 

of the data, two replicate tests were conducted in each set of microcosm experiments. Each test 

was carried out using a series of duplicate microcosm bottles sacrificed each day of the test. Each 

set of microcosm experiments included autotrophic denitrification microcosms (supplemented 

with stock KNO3), abiotic control microcosms (prepared with autoclaved cover material), and 

biotic control microcosms (without KNO3). 

Microcosms were loaded with each cover material and supplemented with basal mineral 

nutrients, nitrate (as KNO3), and sulfide (as Na2S·9H2O), then pH was adjusted to  7.0 using 

1M HCl. According to the simplified stoichiometry of anoxic H2S oxidation (Equation 2-1), the 

theoretical molar ratio of H2S to nitrate is 1:1.6. In order to fully oxidize H2S, nitrate was added 

in excess to microcosms. The composition of basal mineral nutrients modified from Cardoso 

(2006) is given in Table 2-1. The trace element solution contained (g/L) EDTA (0.5), 

ZnSO4·7H2O (0.04), CaCl2 (0.05), MnCl2 (0.05), CoCl2 (0.02), CuSO4 (0.02), and (NH4)2MoO4 

(0.01), adjusted to pH  6.0 using 2M NaOH. Detailed composition for each set of microcosms is 

shown in Table 2-2.   
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Table 2-1. Composition of basal mineral nutrients used for microcosm studies. 

Component Amount 

NH4Cl (g/L) 0.1 

KH2PO4 (g/L) 0.05 

NaHCO3 (g/L) 2.0 

Trace element solution (mL) 0.5 

 

 

Table 2-2. Microcosm composition. 

Parameter 
Sand 

microcosm 

Soil 

microcosm 

Compost 

microcosm 

Amount of cover material used (g) 10 3 5 

Initial concentration of sulfide (mM) 0.5 1.4 0.7 

Initial concentration of NO3
-
-N (mM)* 1.4 4 1.9 

Volume of stock KNO3 used (mL)* 20 20 20 

Volume of stock Na2S·9H2O used (mL) 5 8 6 

Volume of basal mineral nutrients used (mL) 248 246 246 

Volume of 1M HCl used (mL) 2 2 2 

Final volume, excluding cover material volume (mL) 275 276 274 

* Not used in biotic control 

 

Solutions of stock KNO3, basal mineral nutrients and 1M HCl were prepared separately 

and flushed with oxygen-free nitrogen gas for 24 hr. Solutions of basal mineral nutrients, stock 

KNO3, and 1M HCl were dispensed into serum bottles containing cover material as stated in 

Table 2-2. Head-space in bottles was limited to minimize loss of H2S to volatilization.  Prior to 

capping, the headspace was flushed with oxygen-free nitrogen for two minutes. After flushing, 

the serum bottles were capped immediately using butyl rubber stoppers and aluminum crimp 

seals. Prior to the injection of stock Na2S·9H2O prepared using deaerated reagent water, a needle 

was inserted through the butyl rubber stopper in order to release pressure while injecting stock 

Na2S·9H2O. The needle was removed after injecting reagents. The serum bottles were mildly 

shaken by hand to insure that all components contained in serum bottles were well distributed. 
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Blank (no cover material) microcosms were also included to correct for compound losses 

associated with the preparation process. Microcosms were shaken at a speed of 100 rpm in a 

rotary shaker in an inverted position to minimize H2S loss. The microcosm experiments were 

carried out at room temperature (22C). 

In each set of microcosm experiments, abiotic controls were run in parallel under the 

same environmental conditions as previously described with the exception that the controls 

contained cover material that had been autoclaved at 120C for two hours to inhibit biological 

activity. Controls functioned to evaluate whether the changes in H2S concentration could be 

attributed to physical or chemical processes. Biotic controls without stock KNO3 were also 

prepared under the same environmental conditions as previously described to evaluate H2S losses 

not associated with autotrophic denitrification.   

Each set of microcosm experiments consisted of multiple serum bottles operated in a 

batch mode. Each day serum bottles were sacrificed and liquid samples were withdrawn to 

monitor the disappearance of sulfide and nitrate and the production of sulfate. Sulfide was 

analyzed immediately to prevent compound losses by volatilization and/or abiotic oxidation; pH 

was also determined immediately. Samples for nitrate and sulfate determination were membrane 

filtered (0.45 m) and stored without headspace.  
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Analytical Methods 

Physical and chemical characteristics of sand, soil and compost were determined using 

standard methods for soil analysis (Klute, 1986; Page, 1982). The pH of cover materials was 

measured in a cover material-water suspension (10 g cover material to 25 mL distilled water) 

using a Research AR-25 pH/ISE/mV meter (Fisher Scientific, Inc) and combination junction pH 

gel filled electrode (Fisher Scientific, Inc) with an automatic temperature control probe. Moisture 

content was determined gravimetrically by oven-drying at 105C for 24 h and expressed as the 

mass ratio of water to wet cover material. Organic carbon was determined by measuring weight 

loss in cover material samples after burning at 450-550C. Bulk density was determined by 

oven-drying the cover material sample of known volume at 105C for 48 hrs then dividing the 

weight of the dried cover material by the volume. Particle density was determined by measuring 

the oven-dried weight of cover material and the volume of cover material (excluding pore space) 

measured by the volume of water displaced by the cover material. These physical and chemical 

characteristics are summarized in Table 2-3.  

Table 2-3. Characteristics of sand, soil and compost used in microcosms. 

Physical and chemical characteristics Unit 
Sand 

(As received) 

Soil 

(< 2-mm) 

Compost 

(< 2-mm) 

pH (1:2.5 soil to water ratio) - 5.35 7.78 8.50 

Water content, wet basis % 0 32.8 56.7 

Organic content, dry basis % 0.133 18.5 29.8 

Bulk density g/mL 1.6 0.51 0.34 

Particle density g/mL 2.6 2.3 2.2 

 

H2S analysis measured total sulfide as total H2S and does not differentiate among the 

sulfide species. The concentration of sulfide was determined using the ion-selective electrode 
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method found in Standard Methods (1995). Nitrate and sulfate were determined using a DX-120 

ion chromatography (IC, Dionex, Inc) equipped with an AS-14 column and a 0.002-M sodium 

bicarbonate/0.008 M sodium carbonate eluent. The pH was measured immediately after 

sampling using a Research AR-25 pH/ISE/mV meter (Fisher Scientific, Inc) and combination 

junction pH gel filled electrode (Fisher Scientific, Inc) with an automatic temperature control 

probe. Description of quality assurance and quality control (QA/QC) plan is provided in 

Appendix A. 

Results and Discussion 

Appendix A provides experimental data for all microcosm experiments. Each set of 

microcosm experiments included blank (no cover material) microcosms which confirmed that 

there was no H2S loss during the preparation process. Described below are results of soil, 

compost, and sand microcosm experiments. 

H2S Removal in Soil Microcosms 

The disappearance of hydrogen sulfide and nitrate and the formation of sulfate as a 

function of time for soil microcosms are depicted in Figure 2-1. The soil microcosms had an 

initial hydrogen sulfide concentration of 1.4 mM. Hydrogen sulfide was removed rapidly in 

nitrate-added microcosms (Figure 2-1a). Hydrogen sulfide was totally removed by Day 4 while 

nitrate gradually declined and sulfate gradually formed. At the end of the experiment (Day 10), 

the sulfate concentration increased by 1.4 and 1.2 mM in series 1 and 2, respectively while the 

hydrogen sulfide decreased by 1.4 mM, consistent with hydrogen sulfide oxidation. At the time 
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that hydrogen sulfide was totally consumed (Day 4), the liquid appeared to be cloudy (Figure 

2-2), suggesting partial oxidation of hydrogen sulfide to elemental sulfur in colloidal form. This 

was supported by the observation that stoichiometrically not all of the hydrogen sulfide had been 

converted to sulfate by the end of Day 4 (Figure 2-1a). The increase in pH (Figure 2-1a) on Day 

4 also suggested that partial oxidation of hydrogen sulfide had occurred, since OH
-
 is released 

according to Equation 2-2: 

 H2S + 0.4NO3
-
   rsdenitrifiecAutotrophi

S
0
 + 0.2N2 + 0.8H2O + 0.4OH

-
  (2-2) 

Elemental sulfur was frequently observed as an intermediate product of sulfide oxidation 

under denitrifying conditions (Krishnakumar and Manilal, 1999; Cardoso et al., 2006; Tang, 

2008). It is possible that two steps are involved in H2S oxidation. First, H2S is oxidized to sulfur 

(Equation 2-2). Second, sulfur is oxidized to sulfate if there is excess nitrate (Equation 2-3). The 

overall biological reaction is described in Equation 2-1. 

 S
0
 + 1.2NO3

-
 + 0.4H2O   rsdenitrifiecAutotrophi

0.6N2 + SO4
2-

 + 0.8H
+
  (2-3) 

According to the stoichiometric ratios shown in Table 2-4, it is likely that early on H2S 

was removed by both sorption and oxidation, however, not completely oxidized to sulfate as 

suggested by a H2S:SO4
2-

 ratio greater than 1 and NO3
-
:H2S ratio less than 1.6. By the end 

of the experiment, the ratios of NO3
-
:H2S and NO3

-
:SO4

2-
 were both greater than 1.6. This 

may be due to heterotrophic denitrification, since the soil contained organic matter and 

decomposing biomass which could serve as electron donor for nitrate reduction. The ratio of 

H2S:SO4
2-

 in series 1 was near stoichiometry, suggesting complete oxidation of H2S to sulfate, 
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while the ratio of H2S:SO4
2-

 in series 2 was greater than 1, suggesting incomplete oxidation of 

H2S. 

  

a. Autotrophic denitrification microcosms (supplemented with nitrate) 

  

b. Abiotic control microcosms 

  

c. Biotic control microcosms 

Figure 2-1. Chemical analyses of soil microcosms (replicate experiments shown, the plotted 

values are the means obtained from duplicate microcosms). 
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Figure 2-2. Cloudy liquid appeared in soil microcosms treated with nitrate addition. 

 

 

Table 2-4. Stoichiometry in soil microcosms treated with nitrate addition (mM:mM). 

Time (Days) 
Series 1 Series 2 

H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- 

4 8.58 0.79 6.77 5.91 0.71 4.22 

5 4.11 1.10 4.53 2.43 0.28 3.11 

6 2.02 1.15 2.33 2.36 1.11 2.61 

7 1.65 1.27 2.10 1.98 1.19 2.36 

8 1.16 1.80 2.10 1.79 1.26 2.27 

9 1.14 1.75 1.99 1.18 1.69 1.99 

10 1.06 1.78 1.90 1.21 1.71 2.08 

Predicted 

stoichiometry 
1 1.6 1.6 1 1.6 1.6 

 

 

In abiotic controls (Figure 2-1b) where soil was autoclaved to inhibit microbial activity, a 

small amount of hydrogen sulfide (1.36 ± 0.03 mg H2S/g dry soil) was removed. However, 

nitrate concentrations remained constant and sulfate was not produced. It appears that hydrogen 

Cloudy liquid 
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sulfide removed was primarily a physical/chemical reaction such as sorption or ion exchange. 

Similar results were seen in biotic controls (Figure 2-1c) where there was no nitrate added.   

H2S Removal in Compost Microcosms 

Figure 2-3 illustrates the disappearance of hydrogen sulfide and nitrate, and the formation 

of sulfate as a function of time for compost microcosms. The compost microcosms had an initial 

hydrogen sulfide concentration of 0.7 mM. During autotrophic denitrification in compost 

microcosms (Figure 2-3a), hydrogen sulfide was removed at a slower rate compared to soil and 

totally disappeared by Day 10. Nitrate was also gradually consumed.  

The stoichiometric ratios of NO3
-:H2S, H2S:SO4

2-
 and NO3

-
:SO4

2-
 in compost 

microcosms are presented in Table 2-5. Similar to soil microcosms, H2S was initially removed 

by both sorption and oxidation, however, not completely oxidized to sulfate as suggested by 

H2S:SO4
2-

 greater than 1 and NO3
-
:H2S less than 1.6. By the end of the experiments, the 

stoichiometric ratios of NO3
-
:H2S and H2S:SO4

2-
 were still less than 1.6 and greater than 1, 

respectively, suggesting incomplete oxidation of H2S to sulfate. 

In compost abiotic controls (Figure 2-3b), a pattern similar to that of abiotic soil 

microcosm controls was observed. Small amounts of hydrogen sulfide (0.78 ± 0.04 mg H2S/g 

dry soil) were removed, and there was no nitrate removal or sulfate production.  
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a. Autotrophic denitrification microcosms (supplemented with nitrate) 

  

b. Abiotic control microcosms 

  

c. Biotic control microcosms 

Figure 2-3. Chemical analyses of compost microcosms (replicate experiments shown, the plotted 

values are the means obtained from duplicate microcosms). 
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Table 2-5. Stoichiometry in compost microcosms treated with nitrate addition (mM:mM). 

Time (Days) 
Series 1 Series 2 

H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- 

4 * 0.25 * * 0.15 * 

5 3.20 0.55 1.75 6.19 0.29 1.78 

6 2.00 0.71 1.42 2.82 0.59 1.68 

7 2.03 0.90 1.83 1.64 1.09 1.78 

8 1.64 1.07 1.75 1.55 1.06 1.64 

9 1.38 1.27 1.75 1.32 0.98 1.30 

10 1.12 1.39 1.55 1.15 1.09 1.25 

Predicted 

stoichiometry 
1 1.6 1.6 1 1.6 1.6 

* No sulfate produced 

 

 

In biotic controls where there was no nitrate added, compost was found to have a low 

background concentration of nitrate ( 0.29 mg NO3
-
-N/g dry soil). As seen in Figure 2-3c, 

hydrogen sulfide and nitrate were removed gradually and no sulfate was produced. The 

stoichiometric ratios of NO3
-:H2S as shown in Table 2-6 were below 1.6, which suggests 

incomplete oxidation of H2S. The ratios were consistent with denitrification linked to the 

oxidation of H2S to elemental sulfur. The increase in pH (Figure 2-3c) at the end of the 

experiments also supports partial oxidation of hydrogen sulfide. Krishnakumar and Manilal 

(1999) and Cardoso et al. (2006) observed the same behavior in synthetic wastewater enriched 

with chemolithotrophic denitrifier; when nitrate was limiting, sulfate was either not detected at 

all or found at concentration less than predicted. 
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Table 2-6. Stoichiometry of biotic controls in compost microcosms (mM:mM). 

Time (Days) 
Series 1 Series 2 

H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- H2S:SO4
2- NO3

-:H2S NO3
-:SO4

2- 

1 * 0.03 * * 0.10 * 

3 * 0.11 * * 0.19 * 

5 * 0.20 * * 0.19 * 

7 * 0.20 * * 0.28 * 

9 * 0.24 * * 0.35 * 

10 * 0.37 * * 0.32 * 

Predicted 

stoichiometry 
1 1.6 1.6 1 1.6 1.6 

* No sulfate produced 

 

H2S Removal in Sand Microcosms 

The conversion of hydrogen sulfide and nitrate nitrogen and the production of sulfate for 

sand microcosms are depicted in Figure 2-4. The sand microcosms had an initial hydrogen 

sulfide concentration of 0.5 mM. For the nitrate-added microcosms (Figure 2-4a), results showed 

no change in hydrogen sulfide and nitrate nitrogen concentration, and sulfate was not detected. 

Similar results were seen for abiotic (Figure 2-4b) and biotic controls (Figure 2-4c).  
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a. Autotrophic denitrification microcosms (supplemented with nitrate) 

 

b. Abiotic control microcosms 

 

c. Biotic control microcosms 

Figure 2-4. Chemical analyses of sand microcosms (replicate experiments shown, the plotted 

values are the means obtained from duplicate microcosms). 

 

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH

6.50

6.70

6.90

7.10

7.30

7.50

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
H

C
o
n
ce

n
tr

at
io

n
 (

m
M

)

Time (Days)

Hydrogen Sulfide Nitrate-Nitrogen

Sulfate pH



 25 

H2S Removal Rates 

The reaction order of H2S oxidation was determined by plotting experimental data. The 

linearity of plots of H2S concentration versus time (zero order), ln[H2S] versus time (first order), 

and 1/[H2S] versus time (second order) was compared. H2S oxidation followed a zero-order 

reaction with reasonably good R
2
 values (Table 2-7). The zero-order rate data were normalized 

by the dry mass of cover material in each microcosm test and are presented in Table 2-7. In the 

study of bacterial oxidation of H2S under denitrifying conditions by Thiobacillus denitrificans in 

synthetic wastewater (Krishnakumar and Manilal, 1999) sulfide oxidation also followed zero-

order reaction.  Because of the rapid removal of H2S in soil, the actual removal rate may be 

greater than shown in Table 2-7. As can be seen in Table 2-7, autotrophic denitrification (nitrate-

added) in soil was at least an order of magnitude greater than in compost, perhaps due to a lower 

number of autotrophic denitrifiers in compost. This conclusion is supported by polymerase chain 

reaction results in autotrophically denitrifying columns reported by Sungthong et al. (2010).  

Table 2-7. H2S removal rates in soil and compost. 

Type of cover material 

H2S zero-order removal rate,* 

mg H2S/d-g dry cover material (R
2
) 

Nitrate-added Biotic control 

Soil 2.57 ± 0.17 (0.82) 0.12 ± 0.04 (0.70) 

Compost 0.17 ± 0.01 (0.94) 0.08 ± 0.01 (0.71) 

*Average of two sets 
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Application of Autotrophic Denitrification Landfill Biocovers   

Using the flux rates of H2S measured at five C&D landfills in Florida which ranged from 

0.192 to 1.76 mg/m
2
-d (Eun et al., 2006), the H2S removal rate of soil from this study (2.57 mg 

H2S/d-g dry soil) and a soil bulk density of 0.46 g dry soil/mL, the theoretical thickness of a soil 

cover required to remove H2S would be less than 1 mm. The soil cover thickness to remove H2S 

using autotrophic denitrification calculated from this study is significantly less than soil cover 

usually used in landfills. However, H2S removal rates in the field may be lower than in the 

laboratory due to mass transport limitations and lower water content. A minimum of 15 cm of 

cover material for daily cover is generally required by regulations and is recommended to be 

used as a bioactive cover material under autotrophic denitrification conditions. Based on the 

maximum flux rate, the nitrate-nitrogen should be theoretically added at least at a rate of 1.16 mg 

NO3
-
-N/m

2
-d. Nitrate-nitrogen should be added in excess to soil in order to fully oxidize H2S.  

Conclusions 

The microcosm studies confirm that H2S can be effectively removed during autotrophic 

denitrification in soil and compost. Addition of excess nitrate as an electron acceptor under 

anoxic conditions can stimulate indigenous autotrophic denitrifiers both in soil and compost 

leading to H2S removal. In compost microcosms with no nitrate addition, nitrate naturally 

present also stimulated native autotrophic denitrifiers. Results also demonstrated that small 

amounts of H2S can be removed physically/chemically by soil or compost. There was no H2S 

removal observed in sand microcosms.  
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Rapid H2S oxidation to sulfate with nitrate addition can be achieved, particularly in the 

soil tested. Zero-order kinetic rates were found to describe H2S oxidation. The rates of H2S 

oxidation under autotrophic denitrification in soil and compost were 2.57 mg H2S/d-g dry soil, 

and 0.17 mg H2S/d-g dry compost, respectively. A lower rate of H2S oxidation in compost than 

in soil  may be caused by a lower number of autotrophic denitrifiers in compost, as reported by 

Sungthong et al. (2010). Based on these laboratory studies, a minimum 15-cm soil thick cover is 

recommended with the addition of a minimum of 0.7 mg NO3
-
 per mg H2S removed. 

The addition of nitrate to soil or compost cover material provides a promising method to 

minimize H2S emissions from landfills. Further study is needed, however, under conditions more 

closely simulating landfill cover systems (i.e. unsaturated condition and gaseous H2S removal).  
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CHAPTER 3CHAPTER 3 

CONTROL OF H2S EMISSIONS USING AUTOTROPHIC 

DENITRIFICATION LANDFILL BIOCOVERS: LABORATORY 

COLUMN STUDIES 

Introduction 

Construction and demolition (C&D) debris landfills that dispose of large amounts of 

drywall frequently have problems associated with hydrogen sulfide (H2S) generation. H2S can be 

produced when sulfate in gypsum (CaSO42H2O), the main component in drywall, decomposes 

by sulfate-reducing bacteria (SRB) activity under anaerobic conditions in landfills. Due to the 

low odor threshold of H2S, C&D debris landfills receive odor complaints from surrounding 

communities. Prolonged exposure to relatively low concentrations of H2S gas may affect 

memory, coordination, eyes and breathing (ATSDR, 2006). Brief exposures to concentrations of 

H2S gas greater than 500 ppm can cause loss of consciousness and possibly death. Measurements 

of H2S produced at several C&D landfills by Lee et al. (2006) found H2S concentrations in 

ambient air at the landfill surface ranging from below 3 ppb to greater than 50 ppm and H2S 

concentrations in landfill gas from below 3 ppb to 12,000 ppm.  

H2S gas emissions at C&D landfills can be effectively reduced using active gas collection 

and treatment such as activated carbon adsorption, chemical oxidation, incineration, and 

biofiltration. However, due to the high capital, operating, and maintenance costs of gas collection 

and treatment systems, it may not be feasible to install these systems at all landfills. Studies have 

demonstrated that the use of chemically or biologically active landfill covers can effectively 

reduce H2S gas emissions from C&D landfills (Plaza et al., 2006; Xu, 2005). These studies 
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concluded that fine concrete, sandy soil amended with lime, and compost in landfill covers can 

effectively reduce the H2S emissions from landfills. 

The addition of nitrate has been reported to be effective in controlling odors and sulfide 

production from wastewater and oil reservoirs (Bentzen et al., 1995; Jenneman et al., 1986; 

Jobbagy et al., 1994; Okabe et al., 2003a, b; Myhr et al., 2002; Nemati et al., 2001a, b). The 

process of nitrate utilization as an electron acceptor to oxidize inorganic sulfur compounds such 

as H2S, sulfur (S
0
), thiosulfate (S2O3

2-
), tetrathionate (S4O6

2-
) and sulfite (SO3

2-
) is known as 

autotrophic denitrification. Promotion of autotrophic denitrification in a bioactive cover can 

create a barrier to H2S emissions generated from landfills (Sungthong and Reinhart, 2010). This 

biocover may prove to have cost and efficiency benefits when compared to other cover systems 

and therefore may offer an attractive alternative for controlling H2S emissions from landfills.  

Given the successful demonstration of liquid-phase H2S removal by autotrophic 

denitrification in soil microcosms presented in Chapter 2, gas-phase H2S removal simulating a 

landfill cover system was investigated. The objectives of this study were to (1) simulate an 

autotrophic denitrification landfill soil biocover, and (2) investigate the microbial communities 

involved in autotrophic denitrification landfill soil biocovers. 

Experimental Materials and Methods 

Laboratory-scale columns filled with soil were permeated with gas containing H2S and 

monitored for H2S breakthrough over time. These investigations were aimed to evaluate whether 

indigenous microorganisms present in soil could be stimulated to reduce H2S emissions in a 

simulated autotrophic denitrification landfill cover soil environment. Soil was used as a cover 
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material since rapid H2S reduction was observed in autotrophic denitrification microcosms 

(Chapter 2). 

Physicochemical Properties of Soil Used as a Cover Material 

Physical and chemical characteristics of soil as received were determined using standard 

methods for soil analysis (Klute, 1986; Page, 1982). Analytical methods for measurement of pH, 

water content, organic content, and bulk density can be found in Chapter 2. Particle size 

distribution was determined by sieve analysis in accordance with the American Standard for 

Testing and Materials (ASTM) D422-63 Standard Test Method for Particle-Size Analysis of Soil 

(ASTM D 422-63, 2003). These physicochemical properties are summarized in Table 3-1. Figure 

3-1 shows the particle size distribution curve for the soil. According to the coefficients of 

uniformity, Cu, and curvature, Cc, calculated from effective sizes D10, D30, and D60, the soil is 

classified as poorly graded sand (ASTM D 422-63, 2003). 

 

Table 3-1. Characteristics of soil - as received. 

Physical and chemical characteristics Units 
Soil 

(As-Received) 

Soil added in the columns, dry mass basis g 86 

pH (1:2.5 soil to water mass ratio) - 7.65 

Water content, wet mass basis % 36.3 

Organic content, dry mass basis % 28.2 

Bulk density g/mL 0.46 

Effective size   

    D10 mm 0.15 

    D30 mm 0.29 

    D60 mm 0.52 

The coefficient of uniformity, Cu = D60/D10 - 3.5 

The coefficient of curvature, Cc = (D30)
2
/(D60 x D10) - 1.1 
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Figure 3-1. Particle size distribution curve for soil obtained by sieve analysis. 

 

Column Design 

Two laboratory-scale columns were created using 5-cm inside diameter, schedule-40 

clear polyvinyl chloride (PVC) pipe; an autotrophic denitrification column (supplied with 

KNO3) and a control column (without KNO3 addition). Each column was 20 cm in length with 

PVC female adapters and male cleanout plugs at each end. The caps were modified to permit gas 

introduction and exit. A 5-cm layer of gravel was placed at the bottom of each column to ensure 

homogenous distribution of gas. A layer of geotextile was placed on top of the gravel layer to 

support the soil. Soil was placed in the columns to a depth of seven cm. Gas containing H2S was 

introduced at the bottom of the columns. Figure 3-2 provides a schematic drawing of laboratory-

scale columns. Prior to the final experimental design, several columns with various thicknesses 
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of soil were used. It was found that 7-cm soil thickness showed promising results. Appendix B 

shows results from the different trials. 

 

 

Figure 3-2. A schematic drawing of a laboratory-scale column system simulating autotrophic 

column (A) and control column (B). 
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covers were carried out. H2S gas balanced with N2 (Air Liquide, Houston, TX) was introduced 

with H2S concentration of approximately 930 ppmv to the experimental columns of the first set. 
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NO3
-
-N/g dry soil in the first set and 0.499 mg NO3

-
-N/g dry soil in the second set), whereas the 

control column was loaded with soil wetted with distilled water only. 

Prior to introduction to columns, gas was passed through a 500-mL humidification flask 

containing 300 mL of distilled water to saturate the incoming gas stream. After removing the 

larger entrained water droplets by passing through an empty flask (250-mL in size), moisture-

saturated gas was introduced through the bottom of each column. Gas flow rate through the 

columns was regulated by rotameters (Cole Parmer, Vernon Hills, IL). The exhaust gas stream 

from each column passed through 250-mL flask filled with a saturated NaCl solution to create 

back pressure and prevent oxygen diffusion into the columns.  

In order to remove any residual oxygen in the columns, gas containing 99.99% of N2 (Air 

Liquide, Houston, TX) was delivered to the columns for two hours prior to introducing H2S. 

Subsequently, moisture-saturated H2S gas balanced with nitrogen at concentrations near 930 

ppmv and 140 ppmv for the first and second set, respectively was supplied to the columns at gas 

flow rate of ~30 ml/min, corresponding to H2S gas flux of 29 and 4.3 g/m
2
/day for Set 1 and 2 

respectively. The first set of columns was operated individually as shown in Figure 3-2, while 

the second set of columns was operated in parallel with a split inlet, not shown in Figure 3-2. The 

H2S concentrations were measured at the gas inlet and outlet of the columns until H2S 

breakthrough occurred. A sheet of aluminum foil was wrapped around each column to prevent 

exposure to light and the growth of phototrophic microorganisms. Throughout the study, the 

columns were maintained at room temperature of approximately 22C.  
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Analytical Methods 

H2S and related parameters analysis 

Gas samples were collected at the inlet and outlet for H2S concentration determination in 

Tedlar
®

 bags. H2S was analyzed using gas detection tubes (RAE Systems, San Jose, CA) at least 

once per day until H2S breakthrough was observed. Gas detection tubes of various detections 

range from 0.2-1000 ppm were used. Flowrate was confirmed twice daily with the use of a hand-

held flow meter (ADM 1000, Agilent Technologies, Santa Clara, CA) connected to the end of 

the outlet tubing. 

At the end of the experiment, each column was disassembled and soil samples were 

collected along its length. Soil pH was measured in a soil/water suspension according to standard 

methods for soil analysis (Klute, 1986; Page, 1982). Nitrate and sulfate were analyzed by 

extracting 5-10 g of soil with 200 mL of distilled water for one hour followed by filtration of the 

extraction solution through a 0.45-µm filter. Nitrate and sulfate concentrations were determined 

using a DX-120 ion chromatography (IC, Dionex, Inc, Bannockburn, IL) equipped with an AS-

14 column and a 0.002-M sodium bicarbonate/0.008 M sodium carbonate eluent. 

PCR analysis 

Soil samples were collected from the column experiments conducted at 930 ppm and 140 

ppm H2S concentration and also of the raw soil mix which was used in the column experiments. 

Samples of compost used in column experiments were also collected. These samples were 
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approximately 80 to 100 mg each, collected in 1.5 mL sterile capped-plastic tubes. Samples were 

stored at 4ºC immediately after collection. DNA extractions were carried out within 24 hours of 

collection of samples.  

Genomic DNA was extracted from the samples using Soil Master DNA extraction kit. 

The DNA pellets were suspended in TE buffer (10 mM Tris-HCl and 1 mM EDTA at pH 8.0). 

DNA was quantified spectrophotometrically at 230, 260, 280 nm. Given the heterogeneous 

nature of the samples with varying amount of organic contents in each collected sample, the 

DNA yield was variable. DNA samples with high yield were selected for further experiments.  

The reduction of nitrite to nitric oxide by nitrite reductase distinguishes denitrifiers from 

nitrate-respiring bacteria, which do not reduce nitrite to nitric oxide gas (Prieme et al., 2002). 

The reduction of NO2
-
 to NO is catalysed by either copper nitrite reductase (nirK) or cytochrome 

cd1 nitrite reductase (nirS) (Zumft, 1997). The primer sets previously reported to amplify these 

gene fragments were used. Table 3-2 shows the different set of primers used for PCR 

amplification of nirK and nirS used in this study. The different set of primers were tried in order 

to make an assessment of the best primer-set that can give maximum positive PCR amplification 

results for various experimental samples. 

 

Table 3-2. Different sets of primers used for PCR amplification. 

Gene fragments Primer Set Reference 

nirK nirK1F-nirK3R Braker et al. (1998) 

nirK nirK1F-nirK5R Braker et al. (1998) 

nirK F1aCu-R3Cu Hallin and Lindgren (1999) 

nirS nirS1F-nirS3R Braker et al. (1998) 

nirS nirS1F-nirS6R Braker et al. (1998) 

nirS Cd3aF-R3cd Throback et al. (2004) 
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PCR amplifications for DNA extracted from experimental samples were performed in a 

total volume of 30 µl containing 16 ul, 2X PCR buffer (Promega, USA) and 15 pmol of each 

primer, and DNA (3 to 50 ng). All the primer pairs were run with an initial denaturation step at 

94C for 4 minutes. Touchdown PCR, a technique for improving PCR amplification, was 

performed which consisted of 30 s at 95C, a primer-annealing step of 40 s, and an extension of 

40s at 72C. After 40 cycles, a final 7-min incubation at 72C was performed. During the first 10 

cycles, the annealing temperature was decreased by 0.2C every cycle, starting at 47.5C until it 

reached at touchdown at 45.5C. The additional 30 cycles were performed at an annealing 

temperature at 45.5C. The amplification products were analyzed by electrophoresis on 0.9% 

(wt/vol) agarose gel and UV translumination after staining with ethidium bromide. A positive 

result for PCR amplification was considered by a presence of band at appropriate location 

corresponding to the ladder on agarose gels. The relative amounts of PCR products obtained for 

nirS and nirK in experimental samples were estimated by visual comparison of the band 

intensities on agarose gels. 

Results and Discussion 

High H2S Loaded Columns 

H2S Concentrations 

The first column test including a control column and an autotrophic column had an inlet 

H2S concentration of ~930 ppmv for an average mass loading rate of 0.66 mg/g dry soil/d. The 
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hydrogen sulfide concentrations in control and autotrophic columns measured at the inlet and the 

outlet during the operating period are shown in Figure 3-3. Control columns were shut down 

after the outlet concentration stabilized for two weeks. In the autotrophic column, the H2S 

concentrations peaked rapidly within 3 to 4 days, following which H2S was effectively removed 

for approximately 20 days and thereafter H2S concentrations gradually increased then stabilized 

after 35 days.  White powder was observed throughout the column as shown in Figure 3-4. 

 

Figure 3-3. Hydrogen sulfide concentrations at the inlet and the outlet of the control and 

autotrophic denitrification columns. 
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Figure 3-4. White powder appeared in the autotrophic nitrification column at high H2S loading. 

pH, Nitrate-N and sulfate 

After shutting down the columns, soil pH measurements were taken at three levels; 

bottom (0-1 cm), middle (3-4 cm), and top (6-7 cm).  In the control column, pH at the bottom 

(7.69) was slightly lower than that of the initial soil (7.80) while the pH values at the middle 

(7.94) and at the top (7.91) were slightly higher than that of the initial soil. In the autotrophic 

column, pH at all three levels; bottom (8.50), middle (8.77), and top (8.87), were higher than that 

of the initial soil (7.40), as well as the control column. 

In the autotrophic column, to which KNO3 was initially added, nitrate was undetectable 

in soil extracts at all three levels. Sulfate concentrations of 0.84, 0.55 and 0.33 mg/g dry soil 

were found at the top, middle and the bottom of the column, respectively, for a total production 

of 0.51 mM. In the control column, no sulfate was produced. 
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H2S removal 

The cumulative H2S removed from control and autotrophic columns were calculated from 

the inlet and outlet concentrations and flow measurements during the course of the experiment. 

The H2S removal in the control column was attributed to physical/chemical reactions such as ion 

exchange and/or adsorption because of the absence of an electron acceptor and the lack of sulfate 

production. The removal in the autotrophic column was assumed to be a combination of 

biological (autotrophic denitrification) and physical/chemical processes.  The complete oxidation 

of H2S results in the production of sulfate as shown in Equation 3-1.  Partial oxidation can also 

occur at high H2S loading which results in the production of elemental sulfur (Equation 3-2) and 

other byproducts such as polysulfides (Cardoso et al., 2006). 

 H2S + 1.6NO3
-
   rsdenitrifie  cAutotrophi

SO4
2-

 + 0.8N2 + 0.8H2O + 0.4H
+
  (3-1) 

 H2S + 0.4NO3
-
   rsdenitrifie  cAutotrophi

S
0
 + 0.2N2 + 0.8H2O + 0.4OH

-
  (3-2) 

Biological removal of H2S in the autotrophic column was assumed to occur until nitrate 

was consumed, around Day 35, after which continued removal of ~ 230 ppmv was due to 

physical/chemical reactions.  Biological H2S removal over time was calculated by subtracting the 

amount of H2S removed by physical/chemical reactions (230 ppmv) from the total H2S removed, 

assuming that physical/chemical removal occurred at the same rate during the entire column 

operation. Figure 3-5 shows the cumulative H2S mass removed by the different mechanisms.  
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Figure 3-5. Cumulative H2S removed by biological and physical/chemical processes in the 

autotrophic column. 

 

During the course of the experiment (44 Day), it is estimated that a total of 553 mg of 

H2S (51% of total) was physically/chemically removed and a total of 536 mg of H2S (49%) was 

removed biologically, or 6.43 mg H2S/per g dry soil and 6.24 mg H2S/g, respectively.  According 

to the amount of nitrate added to the autotrophic column and the amount of H2S removed, the 

molar ratio of nitrate consumed to H2S removed was 0.75, as shown in Table 3-3. This value was 

lower than 1.6, the theoretical requirement of nitrate for complete oxidation of H2S to sulfate, 

suggesting incomplete oxidation of H2S, a conclusion supported by the high H2S removed to 

sulfate produced ratio reported in Table 3-3. The NO3
-
:H2S ratio was nearer to the value of 0.4 

which is the stoichiometric requirement of nitrate for oxidation of H2S to sulfur. Partial oxidation 

of H2S was also supported by the observation of white powder (assumed to be elemental sulfur) 
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along the column and the increase in soil pH due to the production of hydroxide during the 

oxidation of H2S to sulfur, according to Equation 3-2.  

Table 3-3. Removal ratios for autotrophic denitrifying column at high H2S loading (M:M). 

Ratio Experimental 
Stoichiometry 

(Equation 3-1) 

Stoichiometry 

(Equation 3-2) 

H2S:SO4
2-

 30.7 1 NA 

NO3
-
:H2S 0.75 1.6 0.4 

NO3
-
:SO4

2-
 23.2 1.6 NA 

 

H2S removal rates 

Figure 3-6 presents calculated nitrate nitrogen consumption and biologically H2S removal 

in the autotrophic column. The remaining nitrate nitrogen was calculated by assuming a ratio of 

0.75 moles of NO3
-
-N consumed per mole of H2S removed obtained as described above. Initially, 

12 mmoles of nitrate nitrogen were present. As seen in Figure 3-6, biological H2S removal 

followed three phases over time including a lag or acclimation phase, maximum removal phase, 

and a diminishing removal phase. During the initial lag or acclimation phase, the H2S removal 

rate was relatively low (approximately 0.348 mmole/day) then gradually increased which is 

typical of microbially-mediated processes (Reynolds and Richards, 1995). During the next phase, 

where nitrate and bacterial growth were not limited, H2S was removed at a faster rate. During 

this removal phase, H2S oxidation was found to follow zero-order kinetics (R
2
 of 0.999 - Figure 

3-6) with a zero-order rate constant of 1.17 mmol/day. The zero-order rate constant was 

normalized by the dry soil mass used in the column and was found to be 0.46 mg H2S 

removed/d-g dry soil. During the third phase, where nitrate presumably became limited, 



45 

 

microbial growth was inhibited, and H2S was removed at a diminishing rate (approximately 0.30 

mmole/day). 

 

a) Biological H2S removal and nitrate nitrogen remaining over time 

 

b) Biological H2S removal related to the amount of nitrate remaining 

Figure 3-6. Nitrate nitrogen consumption corresponding to biological H2S removal. 
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Regeneration test for adsorbed H2S 

The remaining soil from the autotrophic column was placed back into the column and 

tested for reappearance of H2S in the gas phase (mediated by sulfate-reducing organisms) by 

introducing 99.99% pure N2 through the bottom of the column at a flow rate of 4-6 mL/min for 

75 days. The effluent gas was monitored for H2S. Initially, H2S concentrations as high as 220 

ppm were detected. It is likely that H2S sorbed by soil particles or dissolved in soil-water was 

released. After Day 5, H2S concentration declined, falling to 0.5 ppm or less during the 

remaining 70 days.  

Low H2S Loaded Columns 

H2S concentrations 

Another set of column experiments was performed with column inlet concentration of 

140 ppmv H2S in the gas phase, for an average mass loading rate of 0.10 mg/g dry soil/d. The 

hydrogen sulfide concentrations in control and autotrophic columns measured at the inlet and the 

outlet during the operating period are shown in Figure 3-7. In the autotrophic column the H2S 

concentrations peaked rapidly and then gradually declined after Day 2. By Day 6, the outlet 

concentration was 0.2 ppm and gradually increased thereafter. This behavior was similar to that 

of the autotrophic column operated at high H2S concentration. The concentration in the control 

column initially increased until Day 3 and eventually stabilized at a value similar to autotrophic 

column.  In the control column the highest H2S outlet concentration detected was 50 ppm, while 

in the autotrophic column the outlet concentration never exceeded 22 ppm over a period of 23 
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days. After operating for about two weeks both columns reached steady state and showed nearly 

identical H2S removal, therefore the columns were shut down.  

 

 

Figure 3-7. Hydrogen sulfide concentrations at the inlet and the outlet of the control and 

autotrophic denitrification columns. 

pH, Nitrate-N and sulfate 

After shutting down the columns soil pH, Nitrate-N, and sulfate were analyzed. Soil pH 

measurements were taken at three levels, bottom (0-1 cm), middle (3-4 cm), and top (6-7 cm) 

from both columns. In the control column, pH at all three levels, bottom (7.58), middle (7.56), 

and top (7.53) was found to be higher than that of the initial soil (7.18). In the autotrophic 

column, pH at all three levels, bottom (7.46), middle (7.23), and top (7.20), was found to be 

lower than that of the initial soil (7.68). 
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KNO3 was added to the autotrophic column at 0.499 mg NO
-
3-N/g dry soil. Soil samples 

were analyzed for nitrate and sulfate at the end of the experiment. Similar to the previous 

experiment with higher H2S concentration, all nitrate nitrogen was consumed, suggesting 

autotrophic denitrification had occurred. Sulfate concentrations of 2.45, 2.28 and 2.05 mg/g dry 

soil were found at the top, middle and the bottom of the column, respectively. The NO3
-
:SO4

2- 

ratio was 1.5, near to that predicted by the stoichiometric relationship of Equation 3-1, indicating 

complete oxidation of H2S to sulfate. This finding was supported by the decrease in pH, resulting 

from hydrogen ion production as seen in Equation 3-1. It is likely that under the lower H2S 

loading, sulfate was the preferred end product of autotrophic denitrification. 

H2S removal 

The cumulative H2S removed from control and autotrophic columns was calculated from 

inlet and outlet concentrations and flow measurements taken during the course of the experiment. 

Total removal by the autotrophic and control columns was 173 and 167 mg H2S, respectively.  

From Figure 3-7, it appears that biological H2S removal ceased after Day 14, presumably due to 

the exhaustion of nitrate. The removal was due to physical/chemical processes thereafter, which 

explains nearly identical outlet H2S concentrations from both columns from Day 15 to 23. 

The total biological H2S removal over time, calculated as described previously, was 5.2 

mg, yielding a H2S:SO4 ratio of 0.1 M/M and a NO3:H2S ratio of 0.6, considerably deviating 

from the stoichiometric ratios.  These results suggest that the assumption that physical/chemical 

removal was at equilibrium during the entire column operation is erroneous at the lower H2S 
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loading.  Therefore it can be assumed that biological removal was occurring rapidly enough to 

limit physical/chemical removal until biological removal ceased after Day 14.  Based on the 

nitrate removed and sulfate produced, and stoichiometry described by Equation 3-1, the H2S 

removal would total 65 - 69 mg (or ~39% of the total H2S removed). Assuming biological 

removal of 69 mg of H2S over 14 days, the average removal rate was 0.058 mg/g dry soil-day. 

PCR on Soil and Compost Columns 

PCR amplification reactions were performed as per the methods described earlier. Initial 

reactions were performed in a reaction volume of 30 µl containing about 50 ng DNA extracted 

from experiment samples. Successful amplification results were obtained by reducing the 

quantity of DNA to between 3 to 5 ng. This could be due to the presence of certain inhibitors of 

PCR which were diluted by using lower quantity of DNA in the PCR reaction.  

Most samples from the column experiment with inlet H2S concentration of 930 ppm 

produced positive PCR results. Therefore the comparison of different primer sets was done using 

the DNA obtained from the 930 ppm inlet H2S concentration column experiment. Out of 16 

samples collected from this experiment, 14 yielded positive results for both primer sets F1aCu-

R3Cu and F1aCu-R3Cu. The K1F-K3R, S1F-S3R, K1F-K5R, and S1F-S6R showed 11, 8, 6, and 

6 positive PCR amplifications respectively with low intensity UV translumination on agarose 

gel. Figure 3-8 shows the agarose gel of the PCR products of nirS fragments using K1F-K3R and 

Cd3aF-R3cd primer sets that corresponds to approximately 374 bp of nirK and 406 bp of nirS 

respectively.  
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Figure 3-8. Agarose gel of PCR products of nirK and nirS fragments using S1F-S3R and Cd3aF-

R3cd primer sets respectively. 

 

The DNA samples from the column study with 140 ppm inlet H2S concentration also 

showed positive results for nirK and nirS fragments using the F1aCu-R3Cu and Cd3aF-R3cd. 

Similarly the raw soil sample used in the column experiments showed positive PCR amplications 

for nirK and nirS but produced a low intensity on the agarose gel.  

PCR amplification was also performed on the samples from a column experiment 

containing compost as media with inlet H2S concentration of 930 ppm (results not reported). 

Primer pairs F1aCu-R3Cu and Cd3aF-R3cd were used for detecting nirK and nirS respectively. 

PCR reactions were run by varying the quantity of DNA from 3 to 50 ng. All eight samples 

failed to produce positive results, indicating absence or undetectable denitrification activity 

which also corresponding to the low H2S removal rates for the compost (Sungthong and 
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Reinhart, 2010). Figure 3-9 shows the agarose gel of PCR products of nirK and nirS fragments 

using S1F-S3R and Cd3aF-R3cd primer sets that corresponds to approximately 455 bp of nirK 

and 406 bp of nirS respectively.  

 

 

Figure 3-9. Agarose gel of PCR products of nirK and nirS fragments using F1aCu-R2Cu and 

Cd3aF-R3cd primer sets respectively. 

 

Based on the results from the PCR experiments it can be concluded that the soil column 

experiments which showed positive results for PCR may help remove H2S from gas phase better 

than compost. The fragments of nirK and nirS amplified using F1aCu-R2Cu and Cd3aF-R3cd 

primer sets respectively, were cloned and sequenced to identify the microorganisms carrying out 

the denitrification process in the column. This work falls outside the scope of this dissertation 

and therefore is not included here. 
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Conclusions 

Column studies supported the results of microcosm studies.  The studies confirm that 

gaseous H2S can be effectively removed using an autotrophic denitrification landfill cover. 

Removal of H2S was observed in all columns due to the capacity for soil to absorb H2S; however 

autotrophic columns removed significantly more. The higher inlet concentration of H2S resulted 

in partial oxidation to elemental sulfur, while sulfate was found at levels predicted by 

stoichiometric relationships at the lower inlet concentration. H2S oxidation in column with 

higher loading was found to follow zero-order kinetics. The rate of H2S oxidation was 0.46 mg 

H2S removed/d-g dry soil. PCR amplifications of soil samples from columns with both higher 

and lower inlet concentration of H2S indicate the presence of denitrifying organisms. 
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CHAPTER 4CHAPTER 4 

CONTROL OF H2S EMISSIONS USING AUTOTROPHIC 

DENITRIFICATION LANDFILL BIOCOVERS: ENGINEERING 

APPLICATIONS 

Introduction 

Construction and demolition (C&D) waste landfills were once considered to be 

environmentally benign as they are used for disposing of stable waste materials such as wood, 

wallboard, concrete, bricks, and paving materials. Because of the low organic matter disposed, 

C&D landfills would result in little or no leachate contamination or methane production. 

Consequently, C&D landfills have less stringent requirements compared to other landfills 

accepting municipal or industrial solid waste. C&D landfills are classified as Class III landfills in 

Florida, where the regulations for Class III landfills do not require liners, leachate management 

systems, gas extraction and treatment systems, or air or water quality monitoring (FDEP, 2010). 

However, C&D debris landfills have experienced problems with hydrogen sulfide (H2S) 

emissions. The generation of H2S in these landfills results from the decomposition of gypsum 

(CaSO42H2O) in wallboard, a primary component of C&D debris. Under optimal conditions in 

the landfills including absence of air, presence of moisture, pH around 7, temperature range 

between 30C and 37C, and the presence of a carbon source, sulfate-reducing bacteria (SRB) 

utilize sulfate in gypsum as an electron acceptor when oxidizing carbon to produce H2S during 

the respiration process (O’Connell, 2005; Hao et al., 1996; Widdel, 1986). Because of the 

heterogeneous mixtures of C&D wastes and the differences in landfill management practices, the 

locations of landfills, landfill ages, and climate, H2S generation at C&D debris landfills varies 
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from one landfill to another. In ambient air, levels of H2S were found to range from below 3 ppb 

to greater than 50 ppm. In landfill gas, H2S was encountered at concentrations ranging from 

below 3 ppb to 12,000 ppm (Lee et al., 2006).  

Due to the distinctive rotten-egg odor and extremely low odor threshold (0.5 ppb) of H2S 

(ATSDR, 2006), C&D landfill owners often face numerous complaints from the surrounding 

communities. Residents complain not only about the odor but also of health problems including 

loss of sense of taste, difficulty in breathing, coughing, and eye irritation (Brat, 2007). Human 

health effects of exposure to H2S depend on the concentration of the gas and the length of the 

exposure (Lewis et al, 2008; ATSDR, 2006; Glass, 1990). Long-term exposure to relatively low 

concentrations of H2S (ppb range) may cause irritation to the eyes, nose, or throat; memory loss; 

loss of the sense of the smell; loss of balance; and difficulty in breathing. Exposure to levels of 

H2S between 50 and 100 ppm after one hour can cause conjunctivitis and respiratory irritation. 

Exposure for more than 30 minutes at concentrations above 500 ppm results in loss of 

consciousness and death. It is clear that H2S emissions from C&D landfills may pose a 

significant risk to health and the environment. 

In response to increasing odor and health complaints linked to the generation of H2S, 

C&D landfill operators have developed a set of best management practices (BMPs) to control 

H2S emissions (U.S.EPA, 2006). Basically, the BMPs include (but are not limited to) diversion 

or recycling of drywall, controlling the pH of the C&D waste at an alkaline level (pH > 9) using 

lime addition, controlling moisture by diversion of stormwater and surface water, using various 

alternative cover materials including fine concrete, compost or a mixture of soil, ash, and lime as 

passive treatment systems, and installing gas collection and recovery systems.  
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Although active gas collection systems can collect the gas for subsequent treatment and 

effectively reduce H2S emissions at C&D landfills, the systems have high capital, operating and 

maintenance costs. Therefore, interest in using alternative cover materials to control H2S 

emissions at less cost has been increasing. As shown in Chapters 2 and 3, an autotrophic 

denitrification landfill biocover has proved to be an effective alternative for controlling H2S 

emissions. The objectives of this study are to provide an overview of available H2S control 

technologies and to evaluate the costs and benefits of H2S cover systems. 

Hydrogen Sulfide Control 

This section provides an overview of approaches to control or minimize H2S emissions 

from landfills. It describes landfill cover materials and active extraction and treatment systems 

used to control gaseous emissions in landfills. It also provides information on masking or 

neutralizing agents used to control odor caused by H2S production. Table 4-1 provides an 

overview of these control processes and lists advantages and disadvantages of each. 

 

Table 4-1. Advantages and disadvantages of H2S prevention/control measures. 

Measure Advantages Disadvantages 

Autotrophic denitrification landfill 

biocover (Cover soil + nitrate addition) 
 Simple and effective operation 

 Minimal operation & maintenance 

 Nitrate requirement function of H2S 

emissions 

 The product, SO4
2-, may be converted 

back to H2S over time 

 Requires absence of oxygen 

 Multiple additions required 

Cover soil + lime  Simple and effective operation 

 Minimal operation & maintenance 

 H2S is not eliminated 

 H2S is reformed if pH drops 

 Finite capacity 

 Lime requirement function of cover 

area 

 Handling of lime is dangerous 
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Measure Advantages Disadvantages 

Fine concrete cover  Simple and effective operation 

 Minimal operation & maintenance 

 H2S is not eliminated 

 H2S is reformed if pH drops 

 Finite capacity 

 Fine concrete requirement function of 

cover area 

Compost cover  Simple and effective operation 

 Minimal operation & maintenance 

 The product, SO4
2-, may be converted 

back to H2S 

 Requires availability of oxygen 

 Limited availability of compost 

 Compost requirement function of 

cover area 

Gas extraction + flare  Highly effective operation  Limited capacity for H2S oxidation 

 High capital, operation, and 

maintenance costs 

 SO2 emissions  

Gas extraction + incinerator  Highly effective operation 

 Applicable for wide range of H2S 

concentrations 

 Energy recovery if enough methane is 

produced 

 High capital, operating, and 

maintenance costs 

 SO2 emissions 

Gas extraction + biofiltration  Effective operation 

 Low capital and operating costs on 

biofiltration 

 High capital, operating, and 

maintenance costs on gas extraction 

installation 

Gas extraction + iron sponge  Highly effective operation  High capital, operating and 

maintenance cost 

 Difficult to remove byproduct 

 Byproduct needs to be properly 

disposed 

Gas extraction + SulfaTreat®  Highly effective operation  High capital, operating, and 

maintenance costs 

 High chemical cost 

Gas extraction + Sulfur-Rite®  Highly effective operation 

 

 

 High capital, operating and 

maintenance costs 

 Byproduct needs to be properly 

disposed 

Gas extraction + The Elimiator®  Highly effective operation 

 

 

 High capital, operating, and 

maintenance costs 

 Byproduct needs to be properly 

disposed 

Gas extraction + LO-CAT®  Highly effective operation 

 

 High capital, operating, and 

maintenance costs 

Gas extraction + MINI-CAT®  Highly effective operation 

 

 High capital, operating, and 

maintenance costs 

Masking and neutralizing agents  Low capital and operating costs 

 

 H2S is not eliminated 

 Odors are temporarily masked 

providing short-term control 
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Cover Materials 

Generally, there are three types of covers that are used in a landfill, daily, intermediate, 

and final covers (Tchobanoglous et al., 1993). The daily cover is a layer that is placed on top of 

the landfilled waste at the end of each day. It is used to reduce vector attraction, fires, odors, and 

precipitation infiltration. The intermediate cover is used on top of any landfill area that will not 

be used for a long period of time (typically one year or more). Covering the parts of a landfill 

that are not used will minimize the amount of precipitation infiltration. The final cover is a 

multilayered system of various materials that is placed at the completion of landfilling operations 

in order to reduce precipitation infiltration and landfill gas emissions.  

Typically soil is used in cover systems, however, alternative cover materials including 

sandy soil amended with lime, clayey soil, fine concrete, coarse concrete, and compost have been 

evaluated as alternative control measures for H2S emissions at both laboratory and field scales. 

At laboratory scale (Plaza et al., 2007), the cover materials studied consisted of sandy soil, sandy 

soil amended with 5% hydrated lime (Ca(OH)2), clayey soil, fine concrete (particle size less than 

2.5 cm), and coarse concrete (particle size greater than 2.5). The study demonstrated that sandy 

soil amended with 5% hydrated lime and fine concrete were most effective for the control of 

hydrogen sulfide. Both materials exhibited reduction efficiencies greater than 99%. The clayey 

and sandy soil had lower reduction with average efficiencies of 65% and 30%, respectively. The 

coarse concrete was the least efficient material. At field scale (Xu et al., 2010), the cover 

materials studied were sandy soil, compost, fine concrete, sandy soil amended with both 1% and 

3% hydrated lime, and sandy soil amended with 10% agricultural lime (CaCO3). With an average 

emission rate of 0.403 mg H2S/m
2
/d over a 10-month period, the field results indicated that cover 
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materials including compost, fine concrete, and sandy soil amended with both types of lime 

effectively attenuated H2S emissions. The H2S emissions were only detected from the test plot 

using sandy soil as cover.  

As described in Plaza et al. (2007) and Xu et al. (2010), the possible H2S attenuation 

mechanisms by these cover materials included physical adsorption, chemical reaction, and 

biological degradation. When H2S gas diffused through the cover materials, some of the gas 

molecules were physically adsorbed on the surface of the cover materials or dissolved into the 

interstitial cover material pore water. Absorbed or dissolved H2S can then be neutralized or 

biologically removed. In concrete and lime-amended sandy soil covers, calcium in lime and 

concrete can react with H2S and ultimately be converted to sulfide minerals through reactions 

shown in 4-1 through 4-3 (Borgwardt et al., 1984 and Laurent et al., 1994): 

 H2S + CaO  CaS + H2O (4-1) 

 H2S + Ca(OH)2  CaS + 2H2O (4-2) 

 H2S + CaCO3  CaS + H2O + CO2 (4-3) 

The use of lime and concrete can increase the pH of cover material to levels greater than 

9, which may inhibit SRB growth, limiting H2S production (Widdel and Pfennig, 1984). Under 

alkaline conditions, the equilibrium of H2S can also be driven toward HS
-
 (Equation 4-4), 

therefore, gaseous H2S emission is avoided. However, if the pH is allowed to drop, H2S can be 

easily reformed. 

 H2S(g) ↔ H2S(aq) ↔ H
+

(aq) + HS
-
(aq) (4-4) 
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The observation of black material at the bottom of the cover materials (Xu et al., 2010) 

suggests an alternative pathway for H2S removed. A reaction between H2S and trace metal 

oxides (MOx) naturally contained in cover materials (e.g. ferrous, zinc, copper, nickel, and 

manganese) may occur to form metal sulfide compounds (MSx), as shown in Equation 4-5 (Xu, 

2005), leading to H2S removal. 

 MOx + xH2S  MSx + xH2O (4-5) 

In compost cover, it was hypothesized that H2S removal was mainly due to aerobic 

biological oxidation (Xu et al., 2010). Because of the pH reduction found in compost, it is likely 

that H2S was biologically oxidized to sulfate with H
+
 production, as shown in Equation 4-6, 

resulting in the acidification of compost. Naturally found Thiobacillus species may be involved 

in this process (Syed et al., 2006).  

 H2S + 2O2 
              
              SO4

2-
 + 2H

+
 (4-6) 

Xu (2005) conducted column experiments to investigate migration of H2S through 

landfill cover materials. The study also provided a possible method for designing the alternative 

cover system. Based on parameters derived from the experiments as shown in Table 4-2 and 

Equation 4-7, the required depth of cover material can be calculated.  

 

 

 

 



62 

 

Table 4-2. Values of D, ν, and  of different cover materials (Xu, 2005). 

Parameters Sandy soil Fine concrete Coarse concrete Lime-amended sandy soil 

D (m
2
/s) 6.09 x 10

-6
 6.53 x 10

-6
 1.09 x 10

-5
 6.16 x 10

-6
 

ν (m/s) 4.23 x 10
-5

 4.42 x 10
-5

 3.10 x 10
-5

 4.21 x 10
-5

 

 (1/s) 1.65 x 10
-3

 1.00 x 10
-2

 1.23 x 10
-3

 9.86 x 10
-3

 

 

    
  

         
             (4-7) 

where Z is depth of cover soil (m), D is H2S effective diffusion coefficient (m
2
/s), ν is 

advection velocity of H2S (m/s),  is H2S adsorption coefficient of cover soil (1/s), Cz is 

acceptable H2S concentration on the surface of the cover soils (ppm), and C0 is H2S 

concentration underneath the cover soils (ppm).  

The thickness of alternative landfill cover to reduce 1,000 ppm of H2S in landfill gas to 

an acceptable level of 3 ppb was calculated to be 0.35 m for fine concrete and lime-amended 

soil, 0.95 m for sandy soil, and 1.37 m for coarse concrete. 

Recently, autotrophic denitrification, an alternative biological denitrification process, has 

been observed during nitrate removal in wastewaters containing high sulfur concentrations or 

reduced sulfur sources (Darbi et al., 2002; Oh et al., 2002; Lampe and Zhang, 2005; Wang et al., 

2005). With this process, sulfur denitrifying bacteria use a reduced inorganic sulfur source (i.e. 

H2S, S, S2O3
2-

, S4O6
2-

, SO3
2-

) as the electron donor when reducing nitrate to nitrogen gas and 

oxidizing sulfur compounds to sulfate (Lampe and Zhang, 2005; Onay and Pohland, 2001). The 

process has been applied for controlling odors caused by the generation of H2S in wastewater 

treatment plants, oil fields, and petrochemical industries (Telang et al, 1997; Jenneman et al., 

1999; Vaiopoulou et al., 2005; Mathioudakis et al., 2006). The results of these studies have 
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proved that the addition of nitrate as a terminal electron acceptor resulted in autotrophic 

denitrification and led to sulfate production.  

The autotrophic denitrification process may also have potential for controlling H2S 

emissions from landfills. Promoting autotrophic denitrification under anoxic landfill cover 

conditions by adding nitrate as an electron acceptor and using H2S as an electron donor creates a 

barrier to minimize gaseous H2S emissions. When applied to landfills, the concept is described as 

shown in Figure 4-1.  

 

Figure 4-1. Autotrophic denitrification landfill biocover. 
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Autotrophic denitrification was investigated using microcosm and laboratory-scale 

column studies. The microcosm studies were conducted in order to evaluate the ability of sand, 

compost, and soil as landfill cover materials to remove H2S under autotrophic denitrification 

conditions (Chapter 2). The microcosm studies demonstrated that H2S can be effectively 

removed using autotrophic denitrification in compost and soil. Addition of nitrate as an electron 

acceptor under anoxic conditions stimulated indigenous autotrophic denitrifiers both in compost 

and soil leading to H2S removal, although soil removal rates (2.57 mg H2S/d-g dry soil) were 

significantly higher than compost (0.17 mg H2S/d-g dry compost). No removal of H2S was 

observed in sand microcosms.  

Further investigation of gas-phase H2S removal in a system simulating a landfill cover 

was undertaken using column experiments (Chapter 3). Soil was used as cover material since 

rapid H2S reduction was observed in autotrophic denitrification microcosms. Two sets of column 

experiments were run. Each column was constructed of clear polyvinyl chloride (PVC) and was 

five cm in diameter.  The first set of columns contained seven cm of soil. The autotrophic 

column was prepared with 1.94 mg NO3
-
-N/g dry soil and a moisture content of 47% by weight, 

wet basis; an identical control column was prepared without nitrate. A gas stream was introduced 

to the columns with a H2S loading rate of 0.66 mg/g dry soil/d. The second set contained seven 

cm of soil, again with both an autotrophic (0.499 mg NO3
-
-N/g dry soil) and control column; H2S 

loading rate was 0.10 mg/g dry soil/d for the second set. Column studies supported the results of 

microcosm studies.  Removal of H2S was observed in all columns due to the capacity for soil to 

absorb H2S; however, autotrophic columns removed significantly more. The higher loading of 



65 

 

H2S resulted in partial oxidation to elemental sulfur as shown in Equation 4-8, while sulfate was 

found (Equation 4-9) at levels predicted by stoichiometric relationships at the lower loading. 

 H2S + 0.4NO3
-
   rsdenitrifie  cAutotrophi

S
0
 + 0.2N2 + 0.8H2O + 0.4OH

-
  (4-8) 

 H2S + 1.6NO3
-
   rsdenitrifie  cAutotrophi

SO4
2-

 + 0.8N2 + 0.8H2O + 0.4H
+
  (4-9) 

Active Gas Collection and Treatment Systems 

C&D debris landfills are typically constructed without gas collection and recovery 

systems. Due to the high capital, operating, and maintenance costs associated with them, gas 

collection and treatment systems may be one of the last control options to be implemented. 

However, these systems are frequently installed at landfills with serious H2S odor problems. 

Active gas collection systems include vertical and horizontal gas collection wells, piping, 

and vacuums or pumps to move gas out of the landfill and into a treatment system. Once 

collected, gas can be treated by combustion, biofiltration, or chemical oxidation. However, 

combustion of H2S may lead to sulfur dioxide (SO2) emissions, which requires additional 

treatment to prevent potential harm to the environment by acid rain (Thichy et al, 1998). Venting 

collected malodorous gas through a biofilter is another technology used to reduce odor. The 

biofilter is made of a filter bed that has high porosity, high buffer capacity, high nutrient 

availability and high moisture retention capacity to support microbial growth (Syed et al., 2006). 

The fundamental principal of biofiltration is that malodorous emissions are utilized by 

microorganisms as a food or energy source, and are destroyed in the process, being converted 

into carbon dioxide (CO2), water, biomass, and other benign byproducts such as chloride and 
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sulfate (Cooper and Alley, 2002). Biofiltration has been particularly successful in the removal of 

hydrogen sulfide from gas streams produced by a number of different processes including 

agricultural practices (Nicolai and Janni, 2001), sewage treatment systems (Brennan et al., 1996), 

and MSW transfer stations (O’Malley, 2003).  

Collected H2S can also be removed via commercial treatment processes using 

technologies which include adsorption on a solid media (dry H2S removal process) and 

absorption into a liquid (liquid H2S removal process). Dry H2S removal processes include an iron 

sponge, SulfaTreat
®

, and Sulfur-Rite
®

. Liquid H2S removal processes include the Eliminator
®

, 

and LO-CAT
®

 or MINI-CAT
®

.  

The iron sponge is the oldest commercial process for removing H2S, consisting of 

hydrated iron oxide (Fe2O3) impregnated onto wood chips. The basic chemistry of the process 

can be represented by equations 4-10 to 4-12 (Kohl and Nielsen, 1997):  

 2Fe2O3 + 6H2S  2Fe2S3 + 6H2O  (4-10)  

 2Fe2S3 + 3O2  2Fe2O3 + 6S  (4-11) 

 Combining equations 4-10 and 4-11, 

 6H2S + 3O2  6H2O + 6S (4-12) 

After operation for several months, the spent iron sponge material is very hard to remove 

from the vessel. During the removal of spent material, the highly reactive iron sulfide can 

generate enough heat to ignite the wood chips. It also has other disadvantages, it is relatively 

expensive to install, produces materials requiring disposal, and causes a high pressure drop in the 

gas collection system. For these reasons, most iron sponges have been replaced by other solid or 

liquid scavenger systems. 
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The SulfaTreat
®

 process uses a proprietary granular material to remove H2S. The iron 

oxide in SulfaTreat
®

 is reportedly present in two forms, Fe2O3 and Fe3O4. Hydrogen sulfide 

reacts with both to produce a mixture of iron sulfides. Conversion efficiency in commercial 

systems is in the range of 0.55 - 0.72 kg H2S/kg iron oxide, which is slightly higher than the 

value of 0.42 kg H2S/kg iron oxide recommended for the iron sponge bed design (Kohl and 

Neilsen, 1997). SulfaTreat
®

 

is reportedly easier to handle than spent iron sponge media because 

the material does not become cemented, thus reducing operating costs, labor for change-out, and 

pressure drops in the bed. Drawbacks associated with this product are similar to the iron sponge; the 

process is non-regenerable, chemically intensive, and spent product can be problematic or expensive 

to dispose of properly. 

Sulfur-Rite
® 

is also a dry-based iron-oxide product. The Sulfur-Rite
®

 manufacturer 

claims that insoluble iron pyrite is the final end product (Gas Technology Products, 2010). The 

Sulfur-Rite
® 

systems come in prepackaged cylindrical units that are recommended for removing 

low levels of H2S, about 25 to 150 kg/day. Company literature claims spent product is non-

pyrophoric and landfillable and has 3-5 times the effectiveness of the iron sponge (Graubard et 

al., 2007; Zicari, 2003).  

The Eliminator
®

 uses a liquid scavenger technology for treating very low levels of H2S, 

typically less than 150 kg/day (Gas Technology Products, 2010; Graubard and Bogner, 2010). 

The Eliminator
®

 contains an amine-based material which is reportedly superior to materials in 

other scrubbing systems. Company literature claims that the Eliminator
®

 does not form salts that 

can lead to H2S release upon heating or acidification. Conversion efficiency in commercial 
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systems is 0.2 kg H2S/kg Eliminator
®

. This technology results in a liquid waste stream that 

requires disposal.  

The LO-CAT
®

 or MINI-CAT
®

 uses a liquid oxidation catalytic process to remove higher 

levels of H2S, from 150 kg to several tons per day (Graubard and Bogner, 2010). MINI-CAT
®

 is 

a smaller version of LO-CAT
®

 with the same chemistry but reduced capital cost. It has been 

developed for treating 150 kg to 2 tons of H2S per day. The LO-CAT
®

 and the smaller scale 

MINI-CAT
®

 use an aqueous solution of ferric ion, held in solution by organic chelating agents, 

to oxidize hydrogen sulfide ions absorbed in the solution, converting them to elemental sulfur 

while the ferric iron is reduced to the ferrous state. The spent ferrous solution is then circulated 

to an oxidizer where it is regenerated with air. The basic chemistry of the process can be 

represented by Equations 4-13 to 4-15: 

 2Fe
3+

 + HS
-
  2Fe

2+
 + S + H

+
  (4-13)  

 4Fe
2+

 + O2 + 2H2O  4Fe
3+

 + 4OH
-
 (4-14) 

 Combining equations 4-13 and 4-14, 

 2H2S + O2  2H2O + 2S (4-15) 

 

The LO-CAT
® 

process operates at ambient temperature and requires no heating or 

cooling of the solution. It is also very efficient in removing H2S (Kohl and Nielsen, 1997). The 

solid sulfur product can be recovered for agricultural or other productive uses (Graubard and 

Bogner, 2010). 
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Masking and Neutralizing Agents 

Masking and neutralizing agents involve the addition of a substance to an odor source to 

reduce the odor intensity or to change the odor characteristic to one that is less objectionable. 

Generally, masking agents are mixtures of essential oils (limonene, pinene, terpene, etc.) and 

esters that have a strong scent and are designed to cover up the objectionable odor with a more 

acceptable odor. Masking agents do not actually react with the odor-causing compound or alter 

the odorous molecules but decrease the perception of the odor by overpowering it (Meyer, 2003). 

Neutralizing agents also are mixtures of aromatic oils that are used to cancel or neutralize 

offensive odors. Rather than overpowering an offensive odor with the more pleasing one of a 

masking agent, the aim of using neutralizing agent is to produce a net zero odor. In the process of 

neutralization, there is no chemical interaction between the odor-causing chemical and the 

neutralizing agent (Meyer, 2003). A wide variety of masking and neutralizing agents are sold to 

control odor emissions associated with H2S generation. Few vendors of these chemicals have 

data documenting their effectiveness for odor reduction. Otieno and Magagula (2001) studied the 

effectiveness of synthetic organic oils, Ecosorb
®

, Ecolo
®

, and Lavender
®

 in reducing the odor 

intensity of H2S gas. Both Ecosorb
®
 and Ecolo

®
 are neutralizing agents, while Lavender

®
 is a 

masking agent. The results showed that Ecosorb
®

 and Ecolo
®

 consistently reduced the odor 

intensity, whereas Lavender
®

 showed no effect. In addition, a further study on possible negative 

effects of these oils on test microorganisms, Bacillus megaterium, Clostridium spp., and 

Staphylooccus aureus was undertaken. Ecosorb
®

 showed non-toxic activity against the tested 

microbes, while both Ecolo
®

 and Lavender were toxic to the tested microbes.   
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Currently, masking and neutralizing agents are used at many landfills to mitigate odor 

problem caused by H2S generation. These chemical can be sprayed along the landfill perimeter, 

around areas where fugitive H2S is present, during waste excavations for gas pipe placement, or 

near the waste offloading area. They are not considered as a permanent odor control system but 

may provide a temporary solution while a permanent system is installed. 

Economic Comparison of Landfill Cover Materials 

The focus of this economic analysis is on cover systems. Installation of gas collection and 

treatment systems and use of masking or neutralizing agent will not have cost-benefits over using 

alternative covers designed to control H2S, therefore their costs and benefits are not considered 

in this study. As demonstrated in previous studies, utilization of compost, soil amended with 

lime, fine concrete, and autotrophic denitrification covers can effectively mitigate H2S emissions. 

Assuming systems have similar application costs, costs of active cover system components (NO3
-

-N fertilizer, lime, fine concrete, and compost) only are compared.  

The economic comparison of cover systems is based on a case-study landfill described by 

Anderson et al. (2009). The case-study landfill is a closed and capped municipal solid waste 

(MSW) landfill containing approximately 2.3 million metric tons of waste. The landfill consists 

of two phases of operation and development, the original landfill area and an expansion area. 

The original landfill area is a 0.12-km
2
 unlined facility operated from 1940 to 1999 and was then 

closed with geomembrane cap system in 2001. The landfill accepted MSW and unprocessed 

C&D waste. The expansion area is a 0.04-km
2
 facility constructed over a portion of the original 

landfill with a RCRA composite liner and leachate collection system. The landfill expansion cell 
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was operated from 2000 to 2005 and was then closed with a geomembrane cap system in 2006. 

The landfill expansion cell accepted approximately 360,000 metric tons of MSW, 18,000 metric 

tons of unprocessed C&D waste, and 79,000 metric tons of C&D fines used as alternative cover 

material.  

Prior to 2003, landfill gas in the original area was managed via passive vent flared. In 

2003, an active landfill gas collection and flare system was first installed in the original area. The 

system was then expanded into the expansion area in 2004. Collection of H2S concentration data 

at the landfill gas collection system started in late 2004. Between October 2004 and April 2009, 

H2S concentrations were measured in collected gas and H2S emissions were estimated as shown 

in Figure 4-2. Concentrations of H2S in the collected gas ranged from 480 to 2,800 ppm. The 

total amount of collected H2S emissions during this period of time was estimated to be 64,500 

kg. A summary of the monthly values of H2S emissions shown in Figure 4-2 is listed in 

Appendix D. An exponential trendline was fitted to the amount of H2S produced over time 

(Equation 4-16). Using Equation 4-16 H2S emissions were estimated over a 15-year period. Total 

amount of H2S collected over a 15-year period was projected to be 80,900 kg.  

      = 3810e
-0.046t

  (4-16) 

where      is H2S production (kg/month) and t is time (month). 
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Figure 4-2. Collected H2S emissions from case-study landfill over time. 

 

Based on the amount of H2S emitted over 15 years (Table 4-3) and the total landfill area 

of 0.16 km
2
, the emission flux rates would range from 1.71 to 587 mg/m

2
/d and the average 

emission flux rate would be 92.4 mg/m
2
/d. The emission flux rates obtained from the case-study 

landfill are quite high compared to 0.179 to 1.94 mg/m
2
/d reported as H2S emission flux rates 

from C&D landfills by Eun et al. (2007) perhaps due to the large amount of C&D fines disposed. 

For the purpose of this economic analysis, it is assumed that all generated H2S is emitted through 

the cover in the expansion area only (0.04 km
2
) and gas collection is not practiced.  

Ammonium Nitrate Fertilizer 

In order to create an autotrophic denitrification landfill cover system, nitrate-nitrogen 

must be provided and diffusion of oxygen must be prevented. According to the stoichiometry 

shown in Equation 4-9 and the total amount of H2S produced over 15 years (80,900 kg), the total 
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amount of nitrate-nitrogen required was calculated to be 53,300 kg. Nitrate-nitrogen would be 

applied to a final cover soil having thickness of 60 cm, typically required at for C&D landfills 

(FDEP, 2010).  

Atmospheric diffusion into a soil cover is limited by soil compaction which reduces 

porosity. In addition, infiltration of liquid leads to partial or complete cover saturation. Oxygen 

concentration generally declines with increasing depth of soil cover. Studies have shown that 

oxygen may be present down to a depth of 40 cm below the soil surface (Christophersen and 

Kjeldsen, 2001). For typical soil the aerobic zone, where oxygen is available, may be present at 

the top 15 to 30 cm (Kinsey, 2007; Natural Environmental Systems, LLC, 2010). Therefore, the 

60-cm soil cover will ensure sufficient anoxic region to support autotrophic denitrification cover. 

In order to create the most economical autotrophic denitrification landfill cover and meet 

the demand of H2S emissions, annual addition of granular ammonium nitrate fertilizer (34% N) 

is proposed. The amount of fertilizer required each year was determined according to the amount 

of H2S produced, shown in Table 4-3. The total amount of ammonium nitrate fertilizer needed 

for the case-study landfill was approximately 157,000 kg. Fertilizer can be applied using a 

tractor-hauled granular fertilizer spreader.  
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Table 4-3. Amounts of ammonium nitrate fertilizer to be used each year. 

Year H2S emissions (kg) Fertilizer, 34% N (kg) 

1 34,300 66,500 

2 19,800 38,300 

3 11,400 22,100 

4 6,600 12,700 

5 3,800 7,300 

6 2,200 4,200 

7 1,300 2,400 

8 700 1,400 

9 400 800 

10 200 500 

11 100 300 

12 100 200 

13 <100 100 

14 <100 100 

15 <100 100 

Total 80,900 157,000 

 

Cover Soil Plus Lime 

Cover soil amended with 1% lime was considered because the material effectively 

attenuated H2S emissions in pilot tests (Xu et al., 2010). Hydrated lime is proposed because it is 

more effective in removing H2S than agricultural lime (Xu, 2005). A 60-cm cover is 

recommended in order to meet requirements at C&D landfills. Based on the expansion area of 

the case-study landfill of 0.04 km
2
, the volume of the cover soil is calculated to be 24,000 m

3
. 

Assuming a cover soil bulk density of 1,100 kg/m
3
 (Xu, 2005), the weight of cover soil is 

calculated to be 26,400 metric tons. The amount of hydrated lime needed is then 260 metric tons 

which exceeds the stoichiometric amount needed (176 metric tons) to react with 80.9 metric tons 



75 

 

of H2S. The addition of hydrated lime to soil will result in an increase of pH to as high as 12 

(Plaza, 2003), therefore emitted H2S should be neutralized, leading to control of H2S emissions. 

Fine Concrete 

Because of the availability of fine concrete at many C&D landfills and its reported 

effectiveness in removing H2S, fine concrete is also considered in this analysis. Based on the 

volume of final cover (24,000 m
3
) calculated from the expansion area of the case-study landfill 

(0.04 km
2
), the required thickness (60 cm), and an estimated bulk density of 1,300 kg/m

3
 (Xu, 

2005), the amount of fine concrete needed to provide landfill over is determined to be 31,200 

metric tons, which contains approximatly 2,808 metric tons of CaO. The amount of CaO in fine 

concrete exceeds the stoichiometric amount needed (133 metric tonns) to react with 80.9 metric 

tons of H2S. Similar to using soil amended with hydrated lime as a cover, emitted H2S is 

neutralized within the fine concrete layer, leading to the reduction of H2S emissions. 

Yard Waste Compost 

Yard waste consists of leaves, grass, clippings, brush, and tree prunings. Through the 

process of composting, these organic wastes can be treated to produce a material that can be used 

as a soil amendment. Compost can also be used as a final cover for landfills serving as a biofilter 

to remove H2S and volatile organic compounds. Based on the calculated volume of 24,000 m
3
 

for the final cover with bulk density of 740 kg/m
3
 (Hurst et al., 2005), the amount of yard waste 

compost needed is 17,800 metric tons. 
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Cover System Cost Comparison 

Costs of ammonium nitrate fertilizer, hydrated lime, fine concrete and compost converted 

to 2010 dollars are presented in Table 4-4. The cost of transportation is estimated at $17/metric 

ton based on a 22-metric ton truck load and a 100-mile delivery (Sonny Glasbrenner Inc., 2010). 

Cost of ammonium nitrate fertilizer was obtained from USDA (2010) as an average U.S. farm 

price of $483/metric ton in 2009. The cost of fertilizer in 2009 dollars was then converted to 

2010 dollars using an inflation conversion factor of 1.015 (Sahr, 2010). Cost of compost was 

obtained from U.S. EPA (1992). This cost represents processing costs of yard waste compost 

using windrow technique. In 1992 the processing cost was estimated to be $33/metric ton and 

was converted to 2010 dollars using inflation conversion factor of 1.547 (Sahr, 2010).  

 

Table 4-4. Chemical and material costs in year 2010. 

Chemical/material 
Unit chemical/material cost 

(2010$/metric ton) 

Ammonium nitrate fertilizer, 34% N (purchased and 

delivered
a
) 

507
b
 

Hydrated lime (purchase and delivered
a
) 370

c
 

Fine concrete (on-site process) 17
d
 

Fine concrete (purchased and delivered
a
) 34

d
 

Compost (on-site process) 51
e
 

Compost (purchased and delivered
a
) 68

e
 

a
Delivery cost of $17/metric ton based on verbal quote provided by Sonny Glasbrenner Inc. 

(2010) 
b
 USDA (2010) 

c
 Republic Mills Inc. (2010) 

d
 Cost based on verbal quote provided by Sonny Glasbrenner Inc. (2010) 

e
 U.S.EPA (1992) 
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Based on the amount of chemicals or materials required, the chemical/material unit cost, 

and the emission rate of H2S; chemical/material cost per kg of H2S treated was determined as 

shown in Table 4-5. Due to the need for yearly application, present worth (PW) costs of fertilizer 

were determined assuming an average interest rate of 5% (USTREAS, 2010). Ammonium nitrate 

fertilizer is the most cost effective, followed by hydrated lime, fine concrete, and yard waste 

compost, when only the chemical/material costs are considered. Fine concrete and yard waste 

compost covers are expensive measures to control H2S emissions because of the large amount of 

materials needed to create a cover. Controlling H2S emissions using fine concrete and compost is 

less expensive at landfills that provide on-site concrete recovery and composting facilities; 

however, ammonium nitrate fertilizer or hydrated lime would still be more cost effective 

applications. 

 

Table 4-5. Chemical/material costs to treat case-study landfill. 

Chemical/Material 
Amount used 

(metric ton) 

Total PW cost 

(2010 $) 

Cost 

($/kg H2S removed) 

NH4NO3 Fertilizer 157 76,200
1
 0.94 

Hydrated lime 260 96,200 1.19 

Fine concrete (on-site process) 31,200 530,400 6.6 

Fine concrete (purchased) 31,200 1,060,800 13.1 

Compost (on-site process) 17,800 905,800 11.2 

Compost (purchased) 17,800 1,210,400 14.7 
1
 PW of annual application 

In addition to cost benefits, an autotrophic denitrification landfill cover system provides 

advantages associated with simple construction and effective control. The products resulting 

from biological conversion of H2S, sulfate and sulfur, could be the concerns because infiltrating 

precipitation could lead to leaching of these oxidized materials back into the landfill. 
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Consequently, H2S may be regenerated from the sulfate and sulfur under anaerobic conditions 

within the landfill. Therefore, multiple additions of fertilizer may be required for long-term H2S 

control.  

Lime-amemded soil cover system also provides advantages similar to autotrophic 

denitrification landfill cover system including cost benefits, simple construction and effective 

operation. However, lime dust can be created while mixing lime and soil, which may pose health 

concerns such as skin, eye, and respiratory irritation to workers (MSDS, 2008). Addition of lime 

would create an alkaline environment in the soil cover system, resulting in an incrase of pH. 

Diffusing H2S from landfill is then neutralized within the cover soil. When the capacity for 

neutralization is exhausted, H2S may be released. Consequently, additional lime may be need.   

Even though construction of a fine concrete cover system is simple, there are some 

drawbacks associated with it. Because of the considerable amount required, fine concrete may 

not be available in sufficient quantities. Working with fine concrete may create health concerns 

similar to working with lime. Similar to using soil amended with hydrated lime as a cover, the 

H2S neutralization capacity is limited and additional fine concrete may be needed.  

Construction of compost landfill cover system is less complicated. However, the cover 

system requires a considerable amount of compost, which may not be available in sufficient 

quantities to create a 60-cm cover. Sulfate and sulfur, which are the products of biological 

oxidation of H2S, may be leached back by infiltrating precipication and H2S may be reproduced. 

In the long run, the compost cover may become clogged by particulate matter and/or biomass 

growth, preventing oxygen diffusion. The system would be less effective and the cover need to 

be replaced.  
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CHAPTER 5CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Autotrophic denitrification has been adopted in environmental applications including 

treatment of water, groundwater, wastewater or gaseous streams contaminated with sulfur and/or 

nitrogen compounds. However, there have been no studies reported in the literature on hydrogen 

sulfide removal using autotrophic denitrification from landfills. In this study, a proof-of-concept 

of autotrophic denitrification landfill biocover was investigated using microcosm followed by 

laboratory-scale column experiments. Based on the results of this study the conclusions for the 

microcosm and column experiments can be drawn as followings. 

Microcosm experiments were conducted in order to prove the concept of autotrophic 

denitrification in a landfill cover. Although microcosms did not simulate the normally 

unsaturated cover system, they allowed experimental control of the process. Soil, compost, and 

sand were tested as landfill cover materials under saturated autotrophic denitrification conditions 

with aqueous hydrogen sulfide-nitrate as the electron donor-acceptor couple. Microcosm results 

demonstrated that autotrophic denitrification in landfill covers composed of soil or compost 

proved is possible, as hydrogen sulfide and nitrate were removed and sulfate was produced. 

Hydrogen sulfide was also removed physically/chemically by soil and compost. Results 

indicated that the addition of nitrate into soil and compost can stimulate indigenous autotrophic 

denitrifying bacteria which are capable of hydrogen sulfide oxidation biologically under anoxic 

conditions. The presence of autotrophic denitrification bacteria was confirmed by PCR analyses 

of soil and compost samples taken from autotrophic column experiments. Additionally, 
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microcosm results demonstrated that two steps are involved in hydrogen sulfide oxidation under 

anoxic condition. Firstly, hydrogen sulfide is oxidized to sulfur; then, sulfur is oxidized to sulfate 

if there is excess nitrate. Zero-order kinetics described the hydrogen sulfide oxidation. The rates 

of hydrogen sulfide oxidation under autotrophic denitrification in soil and compost were 2.57 mg 

H2S/d-g dry soil and 0.17 mg H2S/d-g dry compost, respectively. Because of the rapid removal 

of hydrogen sulfide in soil, the actual removal rate in soil may be greater than the calculated rate.  

Given the successful results of hydrogen sulfide removal under saturated condition of 

soil, further study was conducted under conditions more closely simulating the landfill soil cover 

system (i.e. unsaturated condition and gaseous H2S removal). Two sets of laboratory-scale 

column studies containing seven cm of soil were carried out. Each set consisted of an autotrophic 

column (prepared with nitrate addition) and a control column (prepared without nitrate). The first 

set was exposed to high concentration of H2S in a gas stream, while the second set had a lower 

concentration of H2S. Results demonstrated that gaseous H2S can be effectively removed using 

an autotrophic denitrification landfill soil cover. At the higher loading of H2S, partial oxidation 

of H2S to elemental sulfur was observed. Conversely, complete oxidation of H2S to sulfate was 

found at the lower loading of H2S. H2S oxidation in the column with higher loading was found to 

follow zero-order kinetics. The rate of H2S oxidation was 0.46 mg H2S removed/d-g dry soil. 

Due to these very promising experimental results, an economic comparison of cover 

systems including autotrophic denitrification, soil amended with lime, fine concrete, and 

compost covers was conducted. Based on the case-study landfill area of 0.04 km
2
 and the 

estimated H2S emissions of 80,900 kg over the 15-year period, costs of active cover system 

components were estimated to be $0.94/kg H2S removed for NH4NO3 fertilizer, $1.19/kg H2S 
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removed for hydrated lime, $6.6/kg H2S removed for fine concrete produced on-site, $13.1/kg 

H2S removed for fine concrete purchased and delivered, $11.2/kg H2S removed for compost 

produced on-site, and $14.7/kg H2S removed for compost purchased and delivered. Results 

showed that ammonium nitrate fertilizer was the most cost effective, followed by hydrated lime, 

fine concrete, and yard waste compost. Based on laboratory results and cost effectiveness of 

fertilizer, the autotrophic denitrificaiton landfill biocover offers an attractive alternative to 

control emission of H2S generated from landfills. 

Recommendations 

This work is effective as a proof-of-concept, indicating that the addition of nitrate directly 

to landfill covers under anoxic conditions can be utilized to control H2S emissions effectively 

and economically. However, future work should be conducted to better determine and quantify 

the reactions taking place under autotrophic denitrification landfill covers. The following 

investigations should be performed. 

 Larger scale column studies should be performed to explore scaling effects on H2S 

removal kinetics.  

 A biological assessment of the major active microbial communities in autotrophic 

denitrification landfill cover should be performed. 

 The intermediate products during sulfide oxidation and nitrate reduction should be 

determined to better understand the autotrophic denitrification landfill cover. 

 Large-scale field studies on autotrophic denitrification landfill cover should be 

performed to assess the removal performance at full scale. 
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APPENDIX A 

QA/QC DATA OF MICROCOSM EXPERIMENTS 
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A quality assurance and quality control (QA/QC) plan was followed in order to ensure 

the reliability of the results, as well as to minimize errors while collecting and analyzing the 

samples. This section describes the activities used for sampling and analysis of microcosm 

samples. 

Cleaning of Classware 

Glassware utilized while analyzing liquid samples from microcosm experiments was 

thoroughly cleaned with soap water. Afterwards, glassware was triple washed with distilled 

water.  

Sample Collection 

 Liquid samples from microcosm experiments were withdrawn to monitor the 

disappearance of sulfide and nitrate, and the production of sulfate. Sulfide was analyzed 

immediately to prevent compound losses by volatilization and/or abiotic oxidation, pH was also 

determined immediately. Samples for nitrate and sulfate determination were membrane filtered 

(0.45 m) and stored without headspace.  

Sample Analysis 

 Analytical procedures for sulfide, nitrate, sulfate, and pH followed minimum quality 

assurance and quality control requirements to assess precision and accuracy of the method 

utilized. Duplicate samples were taken for precision by calculation of relative percent difference 

(RPD). RPD is calculated by taking the absolute value of the difference between the two 

measurements, and dividing it by the average of the two, and multiplying the quotient by 100. A 

relative percent difference value of less than 10 is typically good. The accuracy of the analysis 
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was also assessed by preparation of spikes. A known quantity of standard material was added to 

a known volume of sample. The yield of a spike is determined by taking the difference between 

the spiked and unspiked samples, and dividing by the amount that was spiked with, and multiply 

the quotient by 100. An acceptable percent yield is between 80 and 120%. QA/QC data for H2S, 

nitrate, sulfate, and pH measurements are provided as follows. 

 

Table A - 1. Concentrations of H2S, nitrate and sulfate, and pH values from sand microcosms 

(with nitrate addition): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.521 97 0.8 1.459 116 1.3 BD 98 0.0 7.00 0.0 

1 0.520 102 0.0 1.406 116 2.6 BD 98 0.0 6.98 0.0 

2 0.525 100 0.0 1.420 116 2.3 BD 98 0.0 6.97 0.0 

3 0.521 99 0.8 1.435 112 2.0 BD 100 0.0 6.95 0.0 

4 0.519 101 0.0 1.436 112 1.3 BD 100 0.0 6.99 0.0 

5 0.516 100 0.8 1.377 112 2.6 BD 100 0.0 7.02 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

  

 

Table A - 2. Concentration of H2S, nitrate and sulfate, and pH values from sand microcosms 

(Abiotic control): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 0.519 97 0.0 1.438 116 0.6 BD 98 0.0 7.00 0.0 

1 0.508 98 0.0 1.443 116 1.9 BD 98 0.0 7.00 0.0 

2 0.523 99 0.8 1.427 116 2.0 BD 98 0.0 7.01 0.0 

3 0.504 97 1.5 1.432 112 0.3 BD 100 0.0 7.00 0.0 

4 0.506 98 0.8 1.445 112 1.4 BD 100 0.0 7.00 0.0 

5 0.506 97 0.0 1.425 112 0.1 BD 100 0.0 7.00 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 3. Concentration of H2S, nitrate and sulfate, and pH values from sand microcosms 

(Biotic control): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 0.518 97 0.8 BD 116 0.0 BD 98 0.0 7.00 0.0 

1 0.516 101 1.5 BD 116 0.0 BD 98 0.0 7.00 0.0 

2 0.521 100 0.0 BD 116 0.0 BD 98 0.0 7.01 0.0 

3 0.516 99 0.0 BD 112 0.0 BD 100 0.0 7.01 0.0 

4 0.514 99 0.8 BD 112 0.0 BD 100 0.0 7.02 0.0 

5 0.512 99 0.8 BD 112 0.0 BD 100 0.0 7.02 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

Table A - 4. Concentration of H2S, nitrate and sulfate, and pH values from sand microcosms 

(with nitrate addition): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 0.516 98 0.0 1.447 94 0.0 BD 109 0.0 7.00 0.0 

1 0.506 99 0.8 1.452 94 0.3 BD 109 0.0 7.03 0.0 

2 0.487 99 0.8 1.438 94 0.8 BD 109 0.0 7.01 0.0 

3 0.496 101 0.0 1.447 92 0.1 BD 98 0.0 7.05 0.0 

4 0.498 97 0.0 1.430 92 0.4 BD 98 0.0 6.99 0.0 

5 0.505 98 0.0 1.441 92 0.5 BD 98 0.0 7.00 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

 

 

 

 

 



90 

 

Table A - 5. Concentration of H2S, nitrate and sulfate, and pH values from sand microcosms 

(Abiotic control): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 0.502 95 0.8 1.441 94 0.8 BD 109 0.0 7.03 0.0 

1 0.501 98 1.5 1.447 94 0.6 BD 109 0.0 7.02 0.0 

2 0.474 95 1.6 1.439 94 0.6 BD 109 0.0 7.00 0.0 

3 0.500 100 0.0 1.421 92 0.5 BD 98 0.0 6.99 0.0 

4 0.496 95 0.0 1.431 92 2.4 BD 98 0.0 6.98 0.0 

5 0.503 96 0.7 1.413 92 0.6 BD 98 0.0 6.97 0.0 

BD = below detection limit 

R = percent recovery 

RPD = relative percent difference 

 

 

 

Table A - 6. Concentration of H2S, nitrate and sulfate, and pH values from sand microcosms 

(Biotic control): Series 2. 

 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 0.500 93 0.0 BD 94 0.0 BD 109 0.0 7.05 0.0 

1 0.504 98 0.0 BD 94 0.0 BD 109 0.0 7.04 0.0 

2 0.485 98 1.6 BD 94 0.0 BD 109 0.0 7.00 0.0 

3 0.500 100 0.0 BD 92 0.0 BD 98 0.0 7.01 0.0 

4 0.495 96 0.8 BD 92 0.0 BD 98 0.0 6.99 0.0 

5 0.496 97 2.2 BD 92 0.0 BD 98 0.0 7.00 0.0 

BD = below detection limit 

R = percent recovery 

RPD = relative percent difference 
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Table A - 7. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms (with 

nitrate addition): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 1.441 99 1.6 4.015 94 0.0 BD 98 0.0 7.12 0.0 

1 1.236 99 0.0 3.986 94 0.0 BD 98 0.0 7.10 0.3 

2 1.179 96 3.9 3.957 94 0.0 BD 98 0.0 7.12 0.1 

3 1.102 97 6.3 3.883 94 0.0 BD 98 0.0 7.12 0.3 

4 BD 103 4.7 2.877 94 0.1 0.168 98 0.5 7.27 0.3 

5 BD 102 0.0 2.426 102 0.0 0.350 96 0.1 7.23 0.0 

6 BD 105 0.0 2.358 102 0.1 0.712 96 0.3 7.17 0.1 

7 BD 104 0.0 2.183 102 0.0 0.873 96 0.1 7.18 0.3 

8 BD 99 0.0 1.422 102 0.1 1.237 96 0.1 7.07 0.3 

9 BD 100 0.0 1.492 102 0.1 1.269 96 0.0 7.09 0.1 

10 BD 110 0.0 1.445 102 0.2 1.355 96 0.0 7.14 0.3 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

Table A - 8. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms 

(Abiotic control): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 1.44 99 0.0 4.014 107 0.0 BD 99 0.0 7.03 0.1 

1 1.23 98 3.9 4.005 107 0.0 BD 99 0.0 7.04 0.0 

3 1.22 101 0.8 3.918 107 0.0 BD 99 0.0 7.02 0.0 

5 1.16 96 0.0 3.968 107 0.0 BD 99 0.0 7.05 0.1 

7 1.14 102 0.0 4.105 107 0.0 BD 99 0.0 7.05 0.0 

9 1.13 98 5.5 4.067 107 0.0 BD 99 0.0 7.07 0.1 

10 1.12 97 3.0 4.093 107 0.0 BD 99 0.0 7.08 0.1 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 9. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms 

(Biotic control): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR RPD mM PR RPD mM PR RPD Value RPD 

0 1.424 99 0.0 BD 99 0.0 BD 98 0.0 7.10 0.0 

1 1.189 98 0.0 BD 99 0.0 BD 98 0.0 7.10 0.3 

3 1.124 96 3.9 BD 99 0.0 BD 98 0.0 7.10 0.0 

5 1.125 100 1.6 BD 99 0.0 BD 98 0.0 7.09 0.0 

7 1.094 101 1.6 BD 99 0.0 BD 98 0.0 7.10 0.0 

9 1.095 97 1.6 BD 99 0.0 BD 98 0.0 7.12 0.3 

10 1.082 97 0.7 BD 99 0.0 BD 98 0.0 7.14 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

Table A - 10. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms 

(with nitrate addition): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 1.453 91 0.0 4.013 106 3.9 BD 99 0.0 7.14 0.0 

1 1.378 92 0.5 3.937 106 0.8 BD 99 0.0 7.13 0.1 

2 1.297 103 0.8 4.033 106 1.1 BD 99 0.0 7.11 0.1 

3 1.129 101 0.8 4.010 106 2.7 BD 99 0.0 7.12 0.8 

4 BD 105 0.0 2.976 106 6.4 0.246 99 2.7 7.21 0.8 

5 BD 104 0.0 2.158 106 8.8 0.597 99 1.6 7.16 0.4 

6 BD 102 0.0 2.405 106 7.2 0.616 99 2.6 7.18 0.1 

7 BD 100 0.0 2.285 106 2.2 0.732 99 5.2 7.15 0.1 

8 BD 101 0.0 2.175 106 1.5 0.811 99 6.4 7.12 0.4 

9 BD 101 0.0 1.555 106 4.6 1.236 99 9.6 7.07 0.1 

10 BD 104 0.0 1.521 106 8.8 1.200 99 3.4 7.10 0.4 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 11. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms 

(Abiotic control): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 1.442 94 0.0 4.016 96 0.7 BD 106 0.0 7.07 0.6 

1 1.371 96 0.5 3.997 96 1.2 BD 106 0.0 7.11 0.1 

3 1.226 98 0.0 4.062 96 1.8 BD 106 0.0 7.05 0.1 

5 1.170 98 0.8 4.093 96 0.3 BD 106 0.0 7.04 0.1 

7 1.085 90 0.8 4.007 96 1.1 BD 106 0.0 7.02 0.3 

9 1.106 96 3.9 4.016 96 1.2 BD 106 0.0 7.08 0.1 

10 1.111 98 2.4 3.989 96 0.1 BD 106 0.0 7.03 0.1 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

Table A - 12. Concentration of H2S, nitrate and sulfate, and pH values from soil microcosms 

(Biotic control): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 1.453 92 0.8 BD 105 0.0 BD 109 0.0 7.14 0.3 

1 1.331 94 0.5 BD 105 0.0 BD 109 0.0 7.14 0.3 

3 1.169 98 1.6 BD 105 0.0 BD 109 0.0 7.11 0.0 

5 1.125 99 4.0 BD 105 0.0 BD 109 0.0 7.12 0.4 

7 1.068 92 3.9 BD 105 0.0 BD 109 0.0 7.07 0.3 

9 1.038 100 0.8 BD 105 0.0 BD 109 0.0 7.05 0.1 

10 1.080 101 1.6 BD 105 0.0 BD 109 0.0 7.08 0.3 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 13. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(with nitrate addition): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.679 98 0.8 1.867 110 1.0 0.057 103 4.3 7.08 0.1 

1 0.510 92 5.6 1.887 110 2.1 0.056 103 9.0 7.10 0.4 

2 0.452 98 2.4 1.897 110 2.7 0.064 103 6.4 7.10 0.0 

3 0.446 101 0.8 1.846 110 0.5 0.064 103 4.6 7.12 0.1 

4 0.417 101 2.3 1.801 110 1.2 0.065 103 2.0 7.11 0.0 

5 0.355 104 2.1 1.690 110 8.8 0.159 103 5.6 7.13 0.4 

6 0.242 101 1.4 1.556 110 5.3 0.276 103 7.4 7.12 0.6 

7 0.209 105 3.1 1.442 110 1.1 0.289 103 4.7 7.11 1.1 

8 0.134 106 3.1 1.284 110 7.0 0.391 103 6.3 7.10 0.7 

9 0.081 107 0.0 1.106 110 3.2 0.491 103 5.6 7.12 0.1 

10 BD 106 0.0 0.922 110 2.2 0.665 103 4.4 7.13 0.0 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

 

Table A - 14. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(Abiotic microcosm): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.734 99 96 1.911 104 0.1 0.084 108 4.1 7.01 0.1 

1 0.586 91 93 1.919 104 0.3 0.069 108 4.4 6.95 0.1 

3 0.508 101 103 1.915 104 1.4 0.082 108 4.9 7.02 0.3 

5 0.503 102 104 1.909 104 1.9 0.069 108 3.2 6.99 1.1 

7 0.471 105 104 1.882 104 2.0 0.064 108 2.1 7.03 0.0 

9 0.462 105 102 1.858 104 0.2 0.065 108 1.2 7.04 0.3 

10 0.457 105 104 1.868 104 0.2 0.068 108 3.6 7.04 0.3 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 15. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(Biotic control): Series 1. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.740 98 99 0.239 107 1.5 0.056 105 4.6 7.08 0.3 

1 0.523 93 91 0.232 107 4.9 0.061 105 3.2 7.10 0.1 

3 0.423 103 101 0.204 107 5.1 0.063 105 2.8 7.10 0.4 

5 0.441 104 102 0.181 107 3.7 0.061 105 4.1 7.11 0.0 

7 0.310 104 105 0.153 107 4.6 0.062 105 2.5 7.16 0.1 

9 0.352 102 105 0.145 107 3.9 0.060 105 3.1 7.14 0.1 

10 0.259 105 105 0.062 107 4.4 0.062 105 4.6 7.17 0.3 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

Table A - 16. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(with nitrate addition): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.687 96 2.2 1.890 104 0.2 0.061 103 0.4 6.99 0.0 

1 0.505 96 1.5 1.897 104 0.0 0.063 103 0.1 7.03 0.4 

2 0.485 103 3.0 1.910 104 0.7 0.060 103 0.0 7.02 0.7 

3 0.437 93 2.2 1.867 104 2.2 0.062 103 0.1 7.03 0.1 

4 0.365 97 1.5 1.841 104 1.5 0.061 103 0.2 7.09 0.7 

5 0.361 100 2.6 1.796 104 1.5 0.114 103 1.1 7.04 0.4 

6 0.342 102 1.5 1.684 104 0.2 0.183 103 3.7 7.04 0.6 

7 0.315 98 3.0 1.484 104 2.2 0.289 103 3.4 7.05 0.1 

8 0.226 103 4.4 1.402 104 2.4 0.358 103 1.0 7.04 0.9 

9 0.108 100 3.4 1.321 104 4.4 0.499 103 4.2 7.06 0.4 

10 BD 108 0.0 1.140 104 0.9 0.659 103 1.6 7.05 0.3 

BD = below detection limit 

PR = percent recovery 

RPD = relative percent difference 
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Table A - 17. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(Abiotic microcosm): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.700 102 0.0 1.879 102 0.1 0.078 99 0.9 6.93 0.0 

1 0.576 95 2.3 1.886 102 0.5 0.060 99 2.8 6.94 0.1 

3 0.506 96 3.7 1.882 102 0.7 0.063 99 3.9 6.94 0.3 

5 0.457 111 3.7 1.903 102 0.6 0.067 99 2.0 6.96 0.4 

7 0.426 99 2.8 1.895 102 5.3 0.058 99 3.6 6.94 0.7 

9 0.434 97 3.5 1.910 102 0.4 0.073 99 0.7 6.98 0.3 

10 0.441 100 2.3 1.871 102 1.6 0.070 99 4.9 6.98 0.1 

PR = percent recovery 

RPD = relative percent difference 

 

 

 

 

Table A - 18. Concentration of H2S, nitrate and sulfate, and pH values from compost microcosms 

(Biotic control): Series 2. 

Time (Days) 

Concentration 
pH 

Hydrogen Sulfide Nitrate-Nitrogen Sulfate 

mM PR  RPD  mM PR RPD mM PR RPD Value RPD 

0 0.693 96 0.7 0.248 107 4.8 0.067 99 4.8 6.99 0.0 

1 0.473 96 0.8 0.225 107 3.2 0.064 99 2.5 7.02 0.0 

3 0.406 92 3.3 0.194 107 3.4 0.065 99 0.5 7.04 0.1 

5 0.337 110 0.7 0.180 107 4.1 0.064 99 5.3 7.04 0.1 

7 0.319 115 3.7 0.143 107 3.8 0.061 99 0.5 7.00 0.1 

9 0.141 97 2.8 0.053 107 4.5 0.062 99 3.2 7.09 0.1 

10 0.254 100 3.5 0.107 107 3.2 0.063 99 1.0 7.06 0.0 

PR = percent recovery 

RPD = relative percent difference 
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APPENDIX B 

UNSUCCESSFUL COLUMN EXPERIMENTS 
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Prior to the final experimental design with 7-cm thickness of soil as received, several 

columns with various thicknesses of soil were used as concluded in Table B - 1. Detail 

explanations are shown below. 

Table B - 1. Unsuccessful column experiments. 

Experiment Soil packed Observations 

1 20 cm in height/15 cm in diameter 

Soil as received tested 

Oxygen intrusion, no H2S 

detected at the outlet 

2 5 cm in height/15 cm in diameter 

Soil as received tested 

Oxygen intrusion, no H2S 

detected at the outlet 

3 15 cm in height/5 cm in diameter 

Soil as received tested 

No H2S detected at the outlet 

4 3 cm in height/5 cm in diameter 

Sieved soil and sieved soil acid tested  

Early breakthrough of H2S  

5 7 cm in height/5 cm in diameter 

Sieved soil tested 

Early breakthrough of H2S  

 

 

Experiment 1:  

Two laboratory-scale columns were created using 0.15 m ID, schedule-40 clear polyvinyl 

chloride (PVC) pipe, an autotrophic denitrification column, and a control column. Each column 

is 0.5 m in length with PVC caps at the bottom end, and female adapters and male cleanout plug 

at the top end. A 10-cm layer of gravel was placed at the bottom of each column to ensure 

homogenous gas distribution. A layer of geotextile was placed on top of the gravel layer to 

prevent penetration of soil. Each column contained 20 cm of soil. The autotrophic column was 

prepared with KNO3 addition; an identical control column was prepared without nitrate. A gas 

stream was introduced to the columns with a H2S concentration of 930 ppm. See Figure B - 1 for 

a schematic drawing of a laboratory-scale biocover column used in this experiment. 
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Figure B - 1. A schematic drawing of a laboratory-scale column. 

 

During seven days of operating period, there was no H2S detected at the outlets (Figure B 

- 2), suggesting that H2S is absorbed by a large amount of soil. Columns were then shut down 

and some amount of soil from both columns was taken out until five centimeters in depth of soil 

were left. 
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Figure B - 2. H2S inlet and outlet concentrations from both autotrophic and control columns of 

experiment 1. 

 

Experiment 2:  

Autotrophic and control columns contained five centimeters of soil from Experiment 1 

were continued to monitor for H2S concentrations. The H2S concentrations in control and 

autotrophic columns measured at the inlet and the outlet during the operating period are shown in 

Figure B - 3. In control column, breakthrough was seen after operating for 2 weeks. In 

autotrophic column, the H2S concentrations peaked within 4 days, following which H2S was 

effectively removed and remained undetected. Both columns were then shut down. After 

columns were dismantled, white powder was observed at the bottom of both columns, suggesting 

incomplete oxidation of H2S to sulfur caused by oxygen intrusion, resulting in undetectable 

concentrations of H2S at the outlets.  
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Figure B - 3. H2S inlet and outlet concentrations from both autotrophic and control columns of 

experiment 2. 

 

Experiment 3:  

Two smaller laboratory-scale columns were recreated using 5-cm inside diameter, 

schedule-40 clear polyvinyl chloride (PVC) pipe for an autotrophic denitrification column 

(prepared with KNO3 addition) and a control column (prepared without KNO3). Each column 

was 20 cm in length with PVC female adapters and male cleanout plugs at each end. The caps 

were modified to permit gas introduction and exit. A 5-cm layer of gravel was placed at the 

bottom of each column to ensure homogenous distribution of gas. A layer of geotextile was 

placed on top of the gravel layer to support the soil. Soil was placed in the columns to a depth of 

seven centimeters. Gas containing H2S was introduced at the bottom of the columns. Prior to 

introducing with H2S, columns were tested for leaking and no leaks were found. After operated 

for 11 days, there is no H2S detected at the outlets (Figure B - 4), suggesting that H2S is absorbed 

by a large amount of soil 
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Figure B - 4. H2S inlet and outlet concentrations from both autotrophic and control columns of 

experiment 3. 

 

Expreiment 4:  

Columns using normal soil and acidic soil with packing height of 3 cm were operated for 

24 hrs. H2S outlet concentrations were monitored during the operation as shown in Figure B - 5. 

In both columns, the breakthrough was seen early as expected. After 24 hrs of operation, outlet 

concentration of acidic soil column almost reached the inlet concentration (930 ppm). 

Considering the early breakthrough it might be because of the preferential flow due to the thinner 

of soil packing (3 cm of packing). For the next experiment the thicker soil packing height (7-10 

cm) was applied.   
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Figure B - 5 H2S inlet and outlet concentrations from normal soil column and acidic soil column 

of experiment 4. 

  

Experiment 5:  

Columns using sieved soil with packing height of 7 cm were operated for 24 hrs. H2S 

outlet concentrations were monitored during the operation shown in Figure B - 6. In both 

columns the breakthrough are seen early. After 24 hrs of operation, outlet concentrations from 

both columns almost reached the inlet concentration (930 ppm). Considering the early 

breakthrough it might be because of the shortcircuiting along the inside wall caused by dense 

soil.  
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Figure B - 6. H2S inlet and outlet concentrations from both autotrophic and control columns of 

experiment 5. 
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APPENDIX C 

QA/QC DATA OF COLUMN EXPERIMENTS 
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The following activities were used as part of a quality assurance and quality control 

(QA/QC) plan for sampling and analysis of hydrogen sulfide gas. 

Container and Equipment Cleaning 

The Tedlar
®
 bags utilized for sampling gas were cleaned three times before and after 

sampling. The bags were cleaned by opening the bag’s valve and remove all the gas out of the 

bags. Afterwards, the laboratory air was pumped into the bags and was released out of the bags.  

Sample Collection 

Gas samples were collected at the inlet and outlet for H2S concentration determination in 

Tedlar
®

 bags. H2S was analyzed using gas detection tubes (RAE Systems, San Jose, CA) at least 

once per day until H2S breakthrough was observed.  

Sample Analysis 

Gas detection tubes employing various chemical reactions were used for H2S 

measurement. A model LP-1200 piston-type hand pump (RAE Systems, San Jose, CA) was used 

to draw known volumes of sample through the detector tubes. Hydrogen sulfide detector-tubes of 

various detections range from 0.2-1000 ppm were used. The detector-tube is pre-calibrated with 

relative standard deviation of ±12%. Duplicate samples were taken for precision by calculation 

of relative percent difference (RPD). QA/QC data for H2S gas measurements are provided as 

follows. 
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Table C - 1. Hydrogen sulfide concentrations of control column at high loading H2S 

Day 
Flowrate H2S Inlet Concentration H2S outlet Concentration 

mL/min RPD ppm RPD ppm RPD 

0 30.2 2.6 920 0.0 0 0.0 

0.02 30.9 3.6 920 0.0 42 0.0 

0.75 30.3 2.3 920 0.0 180 0.0 

1 30.6 2.3 920 0.0 500 0.0 

1.8 30.4 1.0 920 0.0 620 0.0 

2 30.5 1.0 920 0.0 680 0.0 

3 31.3 0.6 920 0.0 700 0.0 

4 30.9 1.3 900 0.0 680 0.0 

5 31.1 1.1 920 0.0 680 0.0 

7 30.4 2.3 920 0.0 700 0.0 

9 30.3 2.6 960 0.0 790 0.0 

11 30.1 1.8 920 0.0 810 0.0 

13 30.2 2.1 920 0.0 810 0.0 

15 30.1 1.8 920 0.0 820 0.0 

RPD = relative percent difference 

 

 

Table C - 2. Hydrogen sulfide concentrations of autotrophic column at high loading H2S 

Day Flowrate H2S Inlet Concentration H2S outlet Concentration 

mL/min RPD ppm RPD ppm RPD 

0 30.4 3.0 920 0.0 0 0.0 

0.02 29.7 3.4 920 0.0 10 0.0 

0.13 30.3 2.6 920 0.0 44 0.0 

0.88 31.1 1.6 920 0.0 350 0.0 

1.00 30.3 1.5 950 0.0 420 0.0 

1.88 31.1 2.6 930 0.0 500 0.0 

2.00 31.0 2.4 930 0.0 520 0.0 

2.88 30.7 9.0 920 0.0 650 0.0 

3.00 30.4 1.0 920 0.0 600 0.0 

3.83 32.0 1.7 920 0.0 620 0.0 

4.00 29.5 1.2 920 0.0 600 0.0 

5 29.8 1.3 920 0.0 590 0.0 

6 32.2 1.7 920 0.0 550 0.0 

7 31.1 2.3 920 0.0 500 0.0 

7.8 30.9 1.5 920 0.0 400 0.0 

8.3 29.9 1.7 920 0.0 380 0.0 

8.9 30.6 1.3 920 0.0 350 0.0 



108 

 

Day Flowrate H2S Inlet Concentration H2S outlet Concentration 

mL/min RPD ppm RPD ppm RPD 

9.2 30.5 1.8 930 0.0 320 0.0 

9.9 30.5 2.6 930 0.0 290 0.0 

10.1 30.7 2.3 930 0.0 250 0.0 

10.9 30.5 2.3 920 0.0 180 0.0 

11.3 30.7 2.3 920 0.0 150 0.0 

11.9 30.6 1.3 920 0.0 115 0.0 

12.3 30.6 1.8 920 0.0 95 0.0 

13.0 30.4 2.6 920 0.0 60 0.0 

13.8 30.6 3.1 920 0.0 35 0.0 

14.3 31.1 1.8 920 0.0 25 0.0 

14.9 30.7 1.5 900 0.0 18 0.0 

15.4 30.7 1.5 900 0.0 18 0.0 

15.8 30.7 2.6 950 0.0 45 0.0 

16.3 30.5 1.5 950 0.0 115 0.0 

16.8 30.6 0.8 920 0.0 200 0.0 

17.9 30.8 2.4 920 0.0 300 0.0 

18.8 30.9 2.6 920 0.0 350 0.0 

19.9 30.5 2.8 920 0.0 400 0.0 

20.8 30.6 2.6 920 0.0 450 0.0 

21.9 30.7 1.8 930 0.0 500 0.0 

22.9 30.7 2.0 930 0.0 510 0.0 

23.9 30.5 1.8 930 0.0 550 0.0 

24.9 31.1 1.4 930 0.0 590 0.0 

25.9 31.0 1.6 930 0.0 600 0.0 

26.9 31.1 1.4 930 0.0 600 0.0 

27.8 30.9 2.1 930 0.0 610 0.0 

28.8 30.6 2.6 930 0.0 630 0.0 

30.8 31.5 1.3 920 0.0 630 0.0 

32.9 31.1 2.1 920 0.0 670 0.0 

34.9 31.2 1.4 920 0.0 700 0.0 

36.9 31.0 1.6 920 0.0 700 0.0 

38.9 30.3 1.8 920 0.0 700 0.0 

40.9 30.6 1.1 920 0.0 700 0.0 

42.9 31.0 1.8 920 0.0 700 0.0 

43.9 30.9 1.5 920 0.0 700 0.0 

RPD = relative percent difference 
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Table C - 3. Hydrogen sulfide concentrations of control column at low loading H2S 

Day Flowrate H2S Inlet Concentration H2S outlet Concentration 

mL/min RPD ppm RPD ppm RPD 

0.00 30.9 1.6 140 0.0 0 0.0 

0.03 31.0 2.1 140 0.0 4 0.0 

0.24 31.2 1.4 140 0.0 14 0.0 

0.97 30.5 2.1 140 0.0 32 0.0 

1.88 31.7 2.4 140 0.0 44 0.0 

2.98 32.2 1.1 140 0.0 50 0.0 

4.14 32.0 1.9 140 0.0 47 0.0 

5.17 32.5 0.8 140 0.0 47 0.0 

5.89 30.4 2.0 140 0.0 37 0.0 

6.91 31.4 1.6 140 0.0 43 0.0 

7.65 30.0 2.2 140 0.0 40 0.0 

8.79 29.7 5.7 140 0.0 25 0.0 

9.96 30.7 3.6 140 0.0 28 0.0 

12.71 34.4 2.0 140 0.0 38 0.0 

14.65 31.4 1.7 140 0.0 24 0.0 

16.77 31.4 2.0 140 0.0 22 0.0 

18.90 31.6 1.8 140 0.0 20 0.0 

20.67 31.1 1.6 140 0.0 20 0.0 

22.67 31.5 2.0 140 0.0 25 0.0 

RPD = relative percent difference 
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Table C - 4. Hydrogen sulfide concentrations of autotrophic denitrification at low loading H2S 

Day Flowrate H2S Inlet Concentration H2S outlet Concentration 

mL/min RPD ppm RPD ppm RPD 

0.00 30.9 6.2 140 0.0 0 0.0 

0.03 31.2 1.9 140 0.0 2.3 0.0 

0.24 29.7 2.9 140 0.0 10 0.0 

0.97 30.6 2.1 140 0.0 20 0.0 

1.88 30.7 1.6 140 0.0 18 0.0 

2.98 31.0 1.6 140 0.0 10 0.0 

4.14 30.4 1.5 140 0.0 3 0.0 

5.17 28.1 1.2 140 0.0 0.4 0.0 

5.89 30.5 1.5 140 0.0 0.2 0.0 

6.91 30.1 2.7 140 0.0 10 0.0 

7.65 30.6 1.8 140 0.0 18 0.0 

8.79 30.6 3.1 140 0.0 10 0.0 

9.96 30.8 2.6 140 0.0 12 0.0 

12.71 34.3 0.9 140 0.0 22 0.0 

14.65 31.5 3.1 140 0.0 18 0.0 

16.77 32.4 2.4 140 0.0 18 0.0 

18.90 31.4 1.9 140 0.0 15 0.0 

20.67 31.0 2.7 140 0.0 15 0.0 

22.67 30.9 2.9 140 0.0 18 0.0 

RPD = relative percent difference 
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APPENDIX D 

DATA USED FOR COST ANALYSIS 
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Table D - 1. Monthly amounts of H2S produced between October 2004 and April 2009. 

Time H2S produced* (kg) 

Oct-04 2860 

Nov-04 No available data 

Dec-04 No available data 

Jan-05 No available data 

Feb-05 2500 

Mar-05 2520 

Apr-05 2570 

May-05 2520 

Jun-05 2270 

Jul-05 2230 

Aug-05 1860 

Sep-05 1860 

Oct-05 1860 

Nov-05 2270 

Dec-05 2680 

Jan-06 2500 

Feb-06 2180 

Mar-06 1770 

Apr-06 1770 

May-06 1680 

Jun-06 1480 

Jul-06 1230 

Aug-06 1250 

Sep-06 1450 

Oct-06 1540 

Nov-06 1540 

Dec-06 1450 

Jan-07 1230 

Feb-07 1140 

Mar-07 1020 

Apr-07 950 

May-07 890 

Jun-07 770 

Jul-07 730 

Aug-07 680 

Sep-07 680 

Oct-07 680 
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Time H2S produced* (kg) 

Nov-07 680 

Dec-07 640 

Jan-08 590 

Feb-08 540 

Mar-08 500 

Apr-08 480 

May-08 480 

Jun-08 480 

Jul-08 500 

Aug-08 480 

Sep-08 430 

Oct-08 410 

Nov-08 390 

Dec-08 360 

Jan-09 340 

Feb-09 320 

Mar-09 270 

Total 64,500 

 * Monthly amounts of H2S produced were measured by Jambeck et al. (2009).   
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Table D - 2. Amounts of H2S produced, NO3
-
-N required by stoichiometry, and ammonium 

nitrate fertilizer required. 

Month H2S produced* (kg) Stoichiometry of NO3
-
-N** (kg) NH4NO3, 34%N (kg) 

1 3,639 2,397 7,051 

2 3,475 2,289 6,734 

3 3,319 2,187 6,431 

4 3,170 2,088 6,142 

5 3,027 1,994 5,866 

6 2,891 1,905 5,602 

7 2,761 1,819 5,350 

8 2,637 1,737 5,110 

9 2,518 1,659 4,880 

10 2,405 1,585 4,661 

11 2,297 1,513 4,451 

12 2,194 1,445 4,251 

13 2,095 1,380 4,060 

14 2,001 1,318 3,877 

15 1,911 1,259 3,703 

16 1,825 1,202 3,537 

17 1,743 1,148 3,378 

18 1,665 1,097 3,226 

19 1,590 1,047 3,081 

20 1,518 1,000 2,942 

21 1,450 955 2,810 

22 1,385 912 2,684 

23 1,323 871 2,563 

24 1,263 832 2,448 

25 1,206 795 2,338 

26 1,152 759 2,233 

27 1,100 725 2,132 

28 1,051 692 2,036 

29 1,004 661 1,945 

30 959 631 1,857 

31 915 603 1,774 

32 874 576 1,694 

33 835 550 1,618 

34 797 525 1,545 

35 762 502 1,476 

36 727 479 1,409 
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Month H2S produced* (kg) Stoichiometry of NO3
-
-N** (kg) NH4NO3, 34%N (kg) 

37 695 458 1,346 

38 663 437 1,285 

39 634 417 1,228 

40 605 399 1,173 

41 578 381 1,120 

42 552 364 1,069 

43 527 347 1,021 

44 503 332 975 

45 481 317 932 

46 459 303 890 

47 439 289 850 

48 419 276 812 

49 400 264 775 

50 382 252 740 

51 365 240 707 

52 348 230 675 

53 333 219 645 

54 318 209 616 

55 304 200 588 

56 290 191 562 

57 277 182 536 

58 264 174 512 

59 252 166 489 

60 241 159 467 

61 230 152 446 

62 220 145 426 

63 210 138 407 

64 201 132 389 

65 192 126 371 

66 183 121 355 

67 175 115 339 

68 167 110 323 

69 159 105 309 

70 152 100 295 

71 145 96 282 

72 139 91 269 

73 133 87 257 

74 127 83 245 
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Month H2S produced* (kg) Stoichiometry of NO3
-
-N** (kg) NH4NO3, 34%N (kg) 

75 121 80 234 

76 116 76 224 

77 110 73 214 

78 105 69 204 

79 101 66 195 

80 96 63 186 

81 92 60 178 

82 88 58 170 

83 84 55 162 

84 80 53 155 

85 76 50 148 

86 73 48 141 

87 70 46 135 

88 67 44 129 

89 64 42 123 

90 61 40 118 

91 58 38 112 

92 55 36 107 

93 53 35 102 

94 50 33 98 

95 48 32 93 

96 46 30 89 

97 44 29 85 

98 42 28 81 

99 40 26 78 

100 38 25 74 

101 37 24 71 

102 35 23 68 

103 33 22 65 

104 32 21 62 

105 30 20 59 

106 29 19 56 

107 28 18 54 

108 27 17 51 

109 25 17 49 

110 24 16 47 

111 23 15 45 

112 22 15 43 



117 

 

Month H2S produced* (kg) Stoichiometry of NO3
-
-N** (kg) NH4NO3, 34%N (kg) 

113 21 14 41 

114 20 13 39 

115 19 13 37 

116 18 12 36 

117 18 12 34 

118 17 11 32 

119 16 11 31 

120 15 10 30 

121 15 10 28 

122 14 9 27 

123 13 9 26 

124 13 8 25 

125 12 8 23 

126 12 8 22 

127 11 7 21 

128 11 7 20 

129 10 7 20 

130 10 6 19 

131 9 6 18 

132 9 6 17 

133 8 6 16 

134 8 5 16 

135 8 5 15 

136 7 5 14 

137 7 5 14 

138 7 4 13 

139 6 4 12 

140 6 4 12 

141 6 4 11 

142 6 4 11 

143 5 3 10 

144 5 3 10 

145 5 3 9 

146 5 3 9 

147 4 3 9 

148 4 3 8 

149 4 3 8 

150 4 3 7 
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Month H2S produced* (kg) Stoichiometry of NO3
-
-N** (kg) NH4NO3, 34%N (kg) 

151 4 2 7 

152 4 2 7 

153 3 2 6 

154 3 2 6 

155 3 2 6 

156 3 2 6 

157 3 2 5 

158 3 2 5 

159 3 2 5 

160 2 2 5 

161 2 2 4 

162 2 1 4 

163 2 1 4 

164 2 1 4 

165 2 1 4 

166 2 1 4 

167 2 1 3 

168 2 1 3 

169 2 1 3 

170 2 1 3 

171 1 1 3 

172 1 1 3 

173 1 1 3 

174 1 1 2 

175 1 1 2 

176 1 1 2 

177 1 1 2 

178 1 1 2 

179 1 1 2 

180 1 1 2 

Total 80,915 53,309 156,791 

*Amounts of H2S produced were projected using Equation 4-16. 

**Amounts of NO3
-
-N required by stoichiometry were calculated using Equation 4-9. 
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Table D - 3. Calculations of present worth for fertilizer. 

Year 

# 
Year 

Fertilizer, 34% N 

(kg) 

Inflation Conversion factor* 

(base year 2009) 

Future cost 

($) 

Equivalent cost 

(2010 $) 

Present worth 

(2010 $) 

1 2010 66,500 1.015 33,715 33,715 33,715 

2 2011 38,300 1.030 19,705 19,418 18,766 

3 2012 22,100 1.047 11,558 11,205 10,483 

4 2013 12,700 1.064 6,750 6,439 5,831 

5 2014 7,300 1.082 3,945 3,701 3,246 

6 2015 4,200 1.100 2,308 2,129 1,808 

7 2016 2,400 1.118 1,340 1,217 1,000 

8 2017 1,400 1.136 794 710 565 

9 2018 800 1.155 462 406 312 

10 2019 500 1.174 293 253 189 

11 2020 300 1.190 178 152 109 

12 2021 200 1.208 121 101 71 

13 2022 100 1.226 61 51 34 

14 2023 100 1.244 62 51 33 

15 2024 100 1.261 63 51 32 

Total 157,000 

  

79,598 76,194 

* Sahr (2010) 

  

Future costs of fertilizer from year 2010 to 2024 were determined using various 

conversion factors based on the unit price of fertilizer in the year 2009 ($500/metric ton). A 

series of future payments was converted to the present worth of year 2010 using a constant 

annual interest of 5 percent following the Equation below: 

         
 

      
  

where PW2010 is the present worth in dollars of year 2010, F is future value ($), i is interest rate, 

and n is number of years. 
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