8 research outputs found

    Pattern stabilization through parameter alternation in a nonlinear optical system

    Get PDF
    We report the first experimental realization of pattern formation in a spatially extended nonlinear system when the system is alternated between two states, neither of which exhibits patterning. Dynamical equations modeling the system are used for both numerical simulations and a weakly nonlinear analysis of the patterned states. The simulations show excellent agreement with the experiment. The nonlinear analysis provides an explanation of the patterning under alternation and accurately predicts both the observed dependence of the patterning on the frequency of alternation, and the measured spatial frequencies of the patterns.Comment: 12 pages, 5 figures. To appear in PR

    Hydrodynamic analog of particle trapping with the Talbot effect

    Get PDF
    We present the results of an experimental study of the standing waves produced on the surface of a vertically shaken fluid bath just above the Faraday threshold, when a row of equally spaced pillars protrudes from the surface. When the pillar spacing is twice the Faraday wavelength, the resulting wave field is marked by images of the pillars projected at integer multiples of a fixed distance from the row. This projection effect is shown to be analogous to the well-known Talbot or self-imaging effect in optics, and a Faraday-Talbot length is defined that rationalizes the location of the images. A simple model of point sources emitting circular waves captures the observed patterns. We demonstrate that the images may serve as traps for bouncing and walking droplets.National Science Foundation (U.S.) (Grant CMMI-1333242)National Science Foundation (U.S.) (Grant DMS-1614043)Natioanal Science Foundation (U.S.) (Grant CMMI-1727565

    A Laboratory-based Nonlinear Dynamics Course for Science and Engineering Students

    Get PDF
    We describe the implementation of a new laboratory-based interdisciplinary undergraduate course on nonlinear dynamical systems. Geometrical methods and data visualization techniques are especially emphasized. A novel feature of the course is a required laboratory where the students analyze the behavior of a number of dynamical systems. Most of the laboratory experiments can be economically implemented using equipment available in many introductory physics microcomputer-based laboratories
    corecore