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Hydrodynamic analog of particle trapping with the Talbot effect
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We present the results of an experimental study of the standing waves produced on the
surface of a vertically shaken fluid bath just above the Faraday threshold, when a row of
equally spaced pillars protrudes from the surface. When the pillar spacing is twice the
Faraday wavelength, the resulting wave field is marked by images of the pillars projected
at integer multiples of a fixed distance from the row. This projection effect is shown to be
analogous to the well-known Talbot or self-imaging effect in optics, and a Faraday-Talbot
length is defined that rationalizes the location of the images. A simple model of point
sources emitting circular waves captures the observed patterns. We demonstrate that the
images may serve as traps for bouncing and walking droplets.
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I. INTRODUCTION

Hydrodynamics has long served as a rich source of physical analogy. Newton described corpuscles
of light generating waves through the ether like stones dropped on a pond [1], while Thomas Young
argued the wave nature of light by analogy with ripple tank experiments [2]. On an astrophysical
scale, hydrodynamic analogs of black holes [3] and white holes [4] have been explored. In the
quantum realm, both the Aharanov-Bohm [5] and Casimir effects [6] have been examined using
fluid analog systems. The quantum-like features of droplets walking on a vibrating fluid bath [7,8]
are a subject of growing interest [9,10].

As first reported by Faraday [11] in 1831, the free surface of a fluid bath vertically vibrated with
amplitude A, frequency f , and acceleration �(t) = γ cos(2πf t) may become unstable to standing
surface waves with frequency f/2. For a vibrational acceleration γ = A(2πf )2 below the Faraday
threshold γF , the free surface is stable. For γ > γF the surface becomes unstable to subharmonic
Faraday waves with wavelength λF = 2π/kF prescribed by the standard water-wave dispersion
relation

ω2(k) =
(

gk + σ

ρ
k3

)
tanh(hk), (1)

where k is the wave number, g the gravitational acceleration, σ the surface tension, ρ the fluid density,
and h the fluid depth. Faraday waves have been extensively investigated both experimentally and
theoretically [12–14]. Just below the Faraday threshold γ < γF , perturbations of the surface generate
Faraday waves that decay over a characteristic memory time TM = λ2

F /[8π2ν(1 − γ /γF )], where ν

is the fluid’s kinematic viscosity. The Faraday system has recently been used to study hydrodynamic
quantum analogs, as may arise when millimetric droplets levitating on the vibrating bath self-propel
through a resonant interaction with their own wave field [7–9].

The optical Talbot effect occurs in the near field when a monochromatic wave is modulated by
a spatially periodic structure [15]. The effect was discovered in 1836 by Henry Fox Talbot in his
examination of the optical pattern behind an illuminated diffraction grating [16]. The supporting
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FIG. 1. (a) Experimental arrangement [27]. The fluid bath is shaken using an electromagnetic shaker and
imaged using a CCD camera through a 45◦ semireflective mirror with diffuse illumination [12]. (b) Top view
of the fluid bath shows the row of N protruding pillars of diameter D and center-to-center separation d .

theory was developed in 1881 by Lord Rayleigh, who showed that the effect results from the
interference of monochromatic, coherent waves emitted from the diffraction grating [17]. In his
analysis, Rayleigh expressed the optical field resulting from the interference of waves from individual
slits in terms of a sum over monochromatic plane waves with wavelength λ and transverse wave-
vector components 2πn/d, where d is the slit spacing and n ∈ N0. He showed that, at integer
multiples of a distance zT perpendicular to the grating, the intensity distribution at the grating is
reproduced. This distance, called the Talbot length, is given by

zT (λ) = λ

2
(
1 −

√
1 − (

λ
d

)2) . (2)

When λ � d, Eq. (2) reduces to a better-known formula for the Talbot length zT = d2/λ. The
analysis shows that, at even integer multiples of the Talbot length, self-images are spatially in phase
with the grating. At odd integer multiples of the Talbot length, self-images are shifted by half the
slit spacing (d/2), and so are referred to as shifted self-images [18].

The Talbot effect has since been extensively studied and applied in optics [19,20]. This
phenomenon has also been used in a variety of applications including optical trapping of atoms
[21] and particles [22], atom wave interference [23], Bose-Einstein condensates [24], plasmonics
[25], and x-ray imaging [26]. We here present a hydrodynamic analog of the Talbot effect in the
Faraday system, and demonstrate its ability to trap bouncing and walking droplets.

II. THE HYDRODYNAMIC TALBOT EFFECT

A. Experiment

The setup consists of a circular bath 15.8 cm in diameter that is vertically shaken and imaged from
above using a diffuse light source. A schematic of the experiment is shown in Fig. 1. Silicone oil of
viscosity ν = 20.9 cS, density ρ = 950 kg/m3, and surface tension σ = 20.6 mN/m fills the circular
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FIG. 2. The surface of the shaken fluid. Pillars with diameter D = 3.1 mm are spaced d = 9.5 mm apart
from center to center. (a) f = 80 Hz, γ = 0.99γF . Meniscus waves are evident around the pillars. (b) f = 80 Hz,
γ = 1.007γF . Rows of images in front of the pillars are marked with arrows. (c) f = 70 Hz, γ = 1.007γF .
The pattern has lost its periodicity. (d) f = 80 Hz, γ = 1.012γF . The self-imaging pattern is lost, replaced by
a checkerboard of Faraday waves.

bath to a depth of h = 6.10 ± 0.05 mm. The bath is surrounded by a shallow region of depth 1.1 mm
and width 12.7 mm that serves to damp the waves at the bath boundaries. A linear, periodic array
of N pillars, each with diameter D = 3.1 ± 0.1 mm and separated by a center-to-center distance d,
protrudes from the bath to a height of 2.1 mm above the fluid surface.

The recording camera directly above the bath images the surface at a frame rate slightly higher
than f/4 in order to reveal fast oscillations in the observed patterns. The setup is illuminated from
the side by an LED lamp, and the light is redirected by a 45◦ semireflective mirror, as shown in
Fig. 1. The incident light is normal to the bath, then reflects back to the camera. With this imaging
technique, flat areas of the interface appear as bright regions, sloped areas as dark regions.

We report here experimental results with two different array separations of d = 9.5 mm and
d = 12.5 mm with a total number of pillars N = 14 and N = 11, respectively. Arrays with larger
d necessarily had a smaller number of pillars and so produced images only in the central region of
the near field. Forcing frequencies in the range of 40–90 Hz were explored for each array. At every
frequency investigated, the Faraday threshold γF was determined by decreasing γ , initially above
γF , by decrements of 0.01g until Faraday waves far from the boundaries died out within 1 minute.
The Faraday threshold is then set to be 0.005g above this acceleration.

We note that meniscus waves of the form seen in Fig. 2(a) are evident around the pillars even for
γ < γF . The static menisci attached to the pillars have a characteristic height corresponding to the
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(a) (b)

FIG. 3. Video frames showing the wave field around the pillars, captured TF /2 apart. The waves on either
side of the pillars are temporally out of phase and the interpillar ridge sloshes back and forth in synchrony with
the wave patterns.

capillary length
√

σ/ρg ≈ 1.5 mm. When the bath is shaken, the variation in g causes the menisci to
oscillate, emitting waves at the driving frequency f with a wavelength λM = 2π/kM (of order 3 mm
for the frequencies considered) prescribed by Eq. (1) that is notably different from λF . We note that
the attenuation length of the harmonic meniscus waves can be shown to scale as c(kM )/(2νk2

M ), where
c(k) = dω/dk is the group velocity [28]. For the range of frequencies considered, this attenuation
length is of order 2 mm, consistent with Fig. 2(a), where meniscus waves are seen to extend no
further than 1 cm beyond the pillars. While the meniscus waves contribute negligibly to the far field,
they do modify the waves near the pillars, perturbing and coupling to the subharmonic Faraday
waves that emerge for γ > γF .

In a narrow range of driving frequencies that depends on the pillar spacing, standing wave patterns
that replicated the periodicity of the pillar array were apparent [see Fig. 2(b)]. Outside this frequency
range, patterns did not form regular periodic structures and were distorted with defects as shown in
Fig. 2(c). We note that, even at the requisite driving frequency, sharp self-images were observed only
at accelerations within 0.2–1% of γF . At higher γ , the self-image was destroyed and a checkerboard
of Faraday waves, such as those shown in Fig. 2(d), dominated the fluid surface. High speed videos
of the fluid motion reveal that the oscillation frequency of the pattern of all the pillar images is the
resonant subharmonic, f/2, indicating that the patterns result from interfering Faraday waves.

The self-imaging arises over a narrow frequency range in which the center-to-center pillar spacing
corresponds to approximately twice the Faraday wavelength d ≈ 2λF . For the array with d =
9.5 mm, the self-imaging is observed for f = 78–82 Hz, corresponding to a Faraday wavelength
range of λF ≈ 4.7 mm and meniscus wavelength λM ≈ 2.8 mm. Similarly, for the array with
d = 12.5 mm, self-imaging happens at 57–61 Hz, corresponding to λF ≈ 6.0 mm and λM ≈ 3.6 mm.
In both cases, at the frequencies where self-imaging arises we observe that curved ridges form
between the pillars, and slosh laterally, normal to the array direction, in phase with each other at
f/2. Two video frames, taken half a Faraday period TF /2 = 1/f apart, are shown in Fig. 3. The
patterns on opposite sides of the pillar arrays are temporally out of phase, following the phase of the
sloshing interpillar ridges [29].

We attribute these sloshing interpillar ridges to the interaction of Faraday and meniscus waves
in the vicinity of the pillars. For an individual pillar at the onset of instability, γ � γF , waves
are generated along the curved wall, producing wavefronts projecting perpendicular to the pillars
[12]. The wave fronts from neighboring pillars evidently merge to form the sloshing ridges. These
ridges persist even above the regime where self-imaging is observed [see Fig. 2(d)]. We infer that,
when a periodic row of pillars is present, laterally sloshing ridges between the pillars act as sources
of Faraday waves emitted from between the pillars. In the context of our subsequent theoretical
developments it is important to note that it is not the pillars themselves that act as sources of Faraday
waves, but rather the sloshing ridges between them.
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(a) (b)

FIG. 4. (a) Observed and (b) computed fluid surface height viewed from directly above, under oblique
illumination. Circles at the bottom indicate the location of the pillars. Pillar spacing d = 9.5 mm, number of
pillars N = 14, driving frequency f = 80 Hz, Faraday wavelength λF = 4.75 mm, and forcing acceleration
γ = 1.007γF .

B. Modeling

We model this hydrodynamic Talbot effect in terms of a periodic array of point sources emitting
scalar waves. Guided by our observations, we treat the sources as emitters of subharmonic Faraday
waves located between the pillars. We define the x axis as lying along the pillars and the y axis
transverse to the pillars [see Fig. 1(b)]. The elementary solution to the two-dimensional wave equation
is J0(kr)e−iωt , where J0(kr) is the Bessel function of the first kind. When kr � 1, the Bessel function
can be approximated as J0(x) ∼ cos(x − π/4)/

√
πx/2. In adding waves from coherent sources, we

can suppress the phase π/4, and so write the displacement of fluid at a position P (x,y) [Fig. 1(b)]
as the following superposition:

u(x,y,t) = AF

N−1∑
n=1

cos(kF rn − ωF t)√
kF rn

, (3)

where AF is the wave amplitude, rn =
√

y2 + (x − (n − 1/2)d)2, ωF = πf , and kF is the wave
number for Faraday waves, prescribed by the standard water-wave dispersion relation, Eq. (1).
Using Eq. (3), we compute the displacement u(x,y,t) at each point, nondimensionalized by the
wave amplitude AF . In order to compare the simulation results with experimental videos, we use
Surface Plot in MATLAB to visualize the surface elevation. The reflectance properties of the surface
are chosen such that the resulting grey scale in our simulations is consistent with that captured in
our experiments. Figure 4 shows a side-by-side comparison of the simulated and experimentally
observed fluid surface, revealing that the essential features of the observed patterns are adequately
captured by Eq. (3).

In our system, the self-images are generated predominantly by the Faraday waves emitted between
the pillars. For comparison between our experiments and the classical optics theory, which is for a
monochromatic source of wavelength λ, we use the Faraday wavelength in Eq. (2) to evaluate the
Faraday-Talbot length,

zF = zT (λF ) = λF

2
(
1 −

√
1 − (

λF

d

)2) . (4)
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(a) (b)

(c) (d)

FIG. 5. Self-image locations are evident on video frames half a Faraday period apart. Green lines indicate
distances to the in-phase self-images of Faraday wave sources and red lines to the shifted self-images of Faraday
wave sources. (a),(b) Array spacing d = 12.5 mm, f = 58 Hz. Frames (a) and (b) are 1/58 s apart. (c),(d)
Array spacing d = 9.5 mm, f = 80 Hz. Frames (c) and (d) are 1/80 s apart.

Since the sources of Faraday waves are the subharmonic sloshing ridges between the pillars, self-
images that are aligned with the pillars occur at odd integer multiples of zF while those aligned
with the gaps are at even integer multiples of zF . Figure 5 shows the measured distances of the
self-images and shifted self-images in the video frames. Self-images further from the pillars are not
as sharp, resulting in larger measurement errors.

For both arrays, the measured image locations are in excellent agreement with the calculated
Faraday-Talbot length zF . Figure 6 summarizes the results in a plot of experimental image position
versus predicted image position. Note that the image positions are integer multiples of zF .

C. Trapping of bouncing and walking droplets

We explore the trapping properties of the resulting wave field for bouncing and walking droplets
by introducing droplets of silicone oil on the surface of the bath [7]. The dependence of the
bouncing and walking behavior on drop size and forcing acceleration has been well characterized
both experimentally [8] and theoretically [30]. We generate stationary bouncing droplets by rapidly
extracting a pin to break the interface. We then gradually increase the forcing acceleration until
the wave field generated by the pillars is formed, and track the drift of the bouncing droplets over
time. For self-propelling walking droplets, where control of drop size was required, we utilize a
piezoelectric droplet generator to make a single droplet of radius R = 0.395 ± 0.005 mm [31]. We
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FIG. 6. Plot of the experimentally observed self-image positions (ze
F ) vs predicted self-image positions

(zt
F ) for two different forcing frequencies. Lengths are nondimensionalized by the Faraday wavelength λF . The

predicted self-image positions are at integer multiples of the Faraday-Talbot length zF , as defined in Eq. (4).
Circles: Driving frequency f = 58 Hz, λF = 6.13 mm, pillar spacing d = 12.5 mm, zF = 23.9 mm. Squares:
f = 80 Hz, λF = 4.75 mm, d = 9.5 mm, zF = 17.7 mm.

then increase the forcing acceleration beyond the Faraday threshold, and direct the walking droplet
towards the row of pillars.

In the absence of pillars, static bouncing droplets would bounce in place indefinitely. However,
as we gradually increase the forcing acceleration of the bath, enhancing the wave field generated by
the pillars, we note that the droplets begin to drift. Once the drifting is complete, bouncing droplets
align along rows of images, specifically at distances an integer number of the Faraday-Talbot length
away from the row of pillars. The bouncing droplets bounce stably between images, as shown in
Fig. 7(a), where the images are denoted by black crosses.

(a) (b)

FIG. 7. Bouncing droplets (small white circles) drift towards the Faraday-Talbot length, and become
localized between consecutive pillar images, denoted by black crosses. (a) Two bouncers trapped within
the first row of images. This configuration arises for bouncing droplets of different sizes and bouncing modes.
(b) Slow drifting motion of bouncing droplets over time: the white circles indicate the final bouncer positions,
and the blue trail their trajectories. Bouncers initially close to the pillars tend to drift towards the first row of
images, while more distant bouncers are attracted to the second row of images.
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FIG. 8. A walking droplet with radius R = 0.395 ± 0.005 mm impinges on a row of pillars. The droplet
approaches with a speed of approximately 16 mm/s before being transformed from a resonant walker to a
chaotic bouncer. Thereafter, it slowly drifts towards the first row of Talbot images. The droplet trajectory is
color-coded according to speed.

We note that the drift towards the rows of images arises from a wide range of initial bouncing
locations. Figure 7(b) illustrates how bouncing droplets that start close to the row of pillars will drift
towards the first row of images and settle there. Bouncers initially placed farther away generally
drift towards the nearest row of images, which in Fig. 7(b) corresponds to twice the Faraday-Talbot
length. The resulting lattice configurations may destabilize in response to drop-drop interactions,
when the wave field generated by the other bouncers supersedes the background wave field generated
by the pillars.

We also explored the behavior of relatively energetic walking droplets near the Talbot images
when the forcing acceleration was above the Faraday threshold, γ � γF . Specifically, we generated
droplets of radius R = 0.395 ± 0.005 mm and free walking speed u0 ≈ 16 mm/s, and directed
them toward the row of pillars. After interacting with the row of pillars, the vertical dynamics of
the droplets can change drastically, transforming a fast walker into a chaotic bouncer. This bouncer
may then exhibit behavior similar to those in the previous experiments, slowly drifting towards the
Faraday-Talbot length, with a tendency to settle between images. A sample trajectory is shown in
Fig. 8, emphasizing how the droplet’s horizontal speed changes drastically after interacting with the
pillar [29].

III. CONCLUSION

We have reported a hydrodynamic analog of the Talbot effect arising on the surface of a vertically
shaken fluid with a periodic array of protruding pillars. The effect is observed only for driving
frequencies such that the Faraday wavelength is approximately half the pillar spacing and for driving
accelerations that are approximately 0.2–1% above the Faraday threshold. The patterns oscillate at
half the driving frequency, revealing their sources as sloshing Faraday waves excited between the
pillars. A Faraday-Talbot length was defined [Eq. (4)] that rationalizes the locations of the in-phase
and shifted out-of-phase self-images.

Video recordings show laterally sloshing fluid ridges between the pillars that act as the Faraday
wave sources. There are also quickly decaying meniscus waves emitted from the pillars at the
driving frequency that mix with the Faraday waves close to the pillars. While the self-images are
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formed from Faraday waves, the presence of meniscus waves adjoining the pillars plays a critical
role in seeding the Faraday waves. The importance of the meniscus waves was underscored when
we tried the experiment using arrays of submerged pillars (0.3 mm below the fluid surface), and the
self-imaging did not arise.

In the optical Talbot effect, the observed light intensity is due to the diffraction and interference
of light from an illuminated grating. Although the grating is a passive element, it modulates the
light, producing a coherent, periodic source of waves emanating from the grating. In our experiment,
sloshing waves generated by the row of pillars serve as the active element. The coherent waves
emanating from between the pillars interfere to form the observed Faraday-Talbot pattern. In both
cases, the pattern is the result of interference of waves from coherent periodic sources.

The possibility of using the Faraday-Talbot effect for trapping bouncing and walking droplets has
been demonstrated, and represents a hydrodynamic analog of particle trapping with the Talbot effect
[21,22,32]. Stationary bouncers simply drift towards the images, to be trapped between them. The
relatively energetic walkers have their vertical dynamics altered through their interaction with the
pillars, resulting in stationary bouncers trapped between the Faraday-Talbot images. Finally, in the
broader context of hydrodynamic analogs with the Faraday system [9,33], this represents the first
example of an analog of an optical system arising above the Faraday threshold, a parameter regime
to be explored further in future studies.
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