154 research outputs found

    Itm2a, a Target Gene of GATA-3, Plays a Minimal Role in Regulating the Development and Function of T Cells

    Get PDF
    The integral membrane protein 2a (Itm2a) is one of the BRICHOS domain-containing proteins and is structurally related to Itm2b and Itm2c. It is expressed preferentially in the T lineage among hematopoietic cells and is induced by MHC-mediated positive selection. However, its transcriptional regulation and function are poorly understood. Here we showed Itm2a to be a target gene of GATA-3, a T cell-specific transcription factor. Deficiency of Itm2a had little impact on the development and function of polyclonal T cells but resulted in a partial defect in the development of thymocytes bearing a MHC class I-restricted TCR, OT-I. In addition, Itm2a-deficient mice displayed an attenuated T helper cell-dependent immune response in vivo. We further demonstrated that Itm2b but not Itm2c was also expressed in T cells, and was induced upon activation, albeit following a kinetic different from that of Itm2a. Thus, functional redundancy between Itm2a and Itm2b may explain the minimal phenotype of Itm2a deficiency

    Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3

    Get PDF
    Skin lies at the interface between the complex physiology of the body and the external environment. This essential epidermal barrier, composed of cornified proteins encased in lipids, prevents both water loss and entry of infectious or toxic substances. We uncover that the transcription factor GATA-3 is required to establish the epidermal barrier and survive in the ex utero environment. Analysis of Gata-3 mutant transcriptional profiles at three critical developmental stages identifies a specific defect in lipid biosynthesis and a delay in differentiation. Genomic analysis identifies highly conserved GATA-3 binding sites bound in vivo by GATA-3 in the first intron of the lipid acyltransferase gene AGPAT5. Skin from both Gata-3−/− and previously characterized barrier-deficient Kruppel-like factor 4−/− newborns up-regulate antimicrobial peptides, effectors of innate immunity. Comparison of these animal models illustrates how impairment of the skin barrier by two genetically distinct mechanisms leads to innate immune responses, as observed in the common human skin disorders psoriasis and atopic dermatitis

    Reduced thymic output, cell cycle abnormalities, and increased apoptosis of T lymphocytes in patients with cartilage-hair hypoplasia

    Get PDF
    Producción CientíficaBackground: Cartilage-hair hypoplasia (CHH) is characterized by metaphyseal dysplasia, bone marrow failure, increased risk of malignancies, and a variable degree of immunodeficiency. CHH is caused by mutations in the RNA component of the mitochondrial RNA processing (RMRP) endoribonuclease gene, which is involved in ribosomal assembly, telomere function, and cell cycle control. Objectives: We aimed to define thymic output and characterize immune function in a cohort of patients with molecularly defined CHH with and without associated clinical immunodeficiency. Methods: We studied the distribution of B and T lymphocytes (including recent thymic emigrants), in vitro lymphocyte proliferation, cell cycle, and apoptosis in 18 patients with CHH compared with controls. Results: Patients with CHH have a markedly reduced number of recent thymic emigrants, and their peripheral T cells show defects in cell cycle control and display increased apoptosis, resulting in poor proliferation on activation. Conclusion: These data confirm that RMRP mutations result in significant defects of cell-mediated immunity and provide a link between the cellular phenotype and the immunodeficiency in CH

    CDK Inhibitor p18INK4c Is a Downstream Target of GATA3 and Restrains Mammary Luminal Progenitor Cell Proliferation and Tumorigenesis

    Get PDF
    Mammary epithelia are composed of luminal and myoepithelial/basal cells whose neoplastic transformations lead to distinct types of breast cancers with diverse clinical features. We report that mice deficient for the CDK4/6 inhibitor p18Ink4c spontaneously develop ER-positive luminal tumors at a high penetrance. Ink4c deletion stimulates luminal progenitor cell proliferation at pubertal age and maintains an expanded luminal progenitor cell population throughout life. We demonstrate that GATA3 binds to and represses INK4C transcription. In human breast cancers, low INK4C and high GATA3 expressions are simultaneously observed in luminal A type tumors and predict a favorable patient outcome. Hence, p18INK4C is a downstream target of GATA3, constrains luminal progenitor cell expansion and suppresses luminal tumorigenesis in the mammary gland
    corecore