128 research outputs found

    Barriers to symptom management care pathway implementation in pediatric cancer

    Get PDF
    BACKGROUND: Objectives were to describe barriers to pediatric cancer symptom management care pathway implementation and the impact of the COVID-19 pandemic on clinical research evaluating their implementation. METHODS: We included 25 pediatric oncology hospitals in the United States that supported a grant submission to perform a cluster randomized trial in which the intervention encompassed care pathways for symptom management. A survey was distributed to site principal investigators prior to randomization to measure contextual elements related to care pathway implementation. Questions included the inner setting measures of the Consolidated Framework for Implementation Research (CFIR), study-specific potential barriers and the impact of the COVID-19 pandemic on clinical research. The Wilcoxon rank sum test was used to compare characteristics of institutions that agreed that their department supported the implementation of symptom management care pathways vs. institutions that did not agree. RESULTS: Of the 25 sites, one withdrew because of resource constraints and one did not respond, leaving 23 institutions. Among the seven CFIR constructs, the least supported was implementation climate; 57% agreed there was support, 39% agreed there was recognition and 39% agreed there was prioritization for symptom management care pathway implementation at their institution. Most common barriers were lack of person-time to create care pathways and champion their use (35%), lack of interest from physicians (30%) and lack of information technology resources (26%). Most sites reported no negative impact of the COVID-19 pandemic across research activities. Sites with fewer pediatric cancer patients were more likely to agree that staff are supported to implement symptom management care pathways (P = 0.003). CONCLUSIONS: The most commonly reported barriers to implementation were lack of support, recognition and prioritization. The COVID-19 pandemic may not be a major barrier to clinical research activities in pediatric oncology

    Guideline for the Prevention of Oral and Oropharyngeal Mucositis in Children Receiving Treatment for Cancer or Undergoing Haematopoietic Stem Cell Transplantation

    Get PDF
    PURPOSE: To develop an evidence-based clinical practice guideline for the prevention of oral mucositis in children (0-18 years) receiving treatment for cancer or undergoing haematopoietic stem cell transplantation (HSCT). METHODS: The Mucositis Prevention Guideline Development Group was interdisciplinary and included internationally recognised experts in paediatric mucositis. For the evidence review, we included randomised controlled trials (RCTs) conducted in either children or adults evaluating the following interventions selected according to prespecified criteria: cryotherapy, low level light therapy (LLLT) and keratinocyte growth factor (KGF). We also examined RCTs of any intervention conducted in children. For all systematic reviews, we synthesised the occurrence of severe oral mucositis. The Grades of Recommendation, Assessment, Development and Evaluation approach was used to describe quality of evidence and strength of recommendations. RESULTS: We suggest cryotherapy or LLLT may be offered to cooperative children receiving chemotherapy or HSCT conditioning with regimens associated with a high rate of mucositis. We also suggest KGF may be offered to children receiving HSCT conditioning with regimens associated with a high rate of severe mucositis. However, KGF use merits caution as there is a lack of efficacy and toxicity data in children, and a lack of long-term follow-up data in paediatric cancers. No other interventions were recommended for oral mucositis prevention in children. CONCLUSIONS: All three specific interventions evaluated in this clinical practice guideline were associated with a weak recommendation for use. There may be important organisational and cost barriers to the adoption of LLLT and KGF. Considerations for implementation and key research gaps are highlighted

    Pandemic (H1N1) 2009 influenza in Canadian pediatric cancer and hematopoietic stem cell transplant patients

    Get PDF
    Background The impact of pandemic H1N1 influenza (pH1N1) virus in pediatric cancer is uncertain. The objectives of this study were to characterize the clinical course of pH1N1 and identify factors associated with severe outcomes. Methods We conducted a Canadian multicenter retrospective review of children with cancer and stem cell transplant (SCT) recipients who were diagnosed with laboratory-confirmed pH1N1 infection between May 1, 2009 and January 31, 2010. Results We identified 100 (19 in wave 1 and 81 in wave 2) cases of pH1N1 infection. Median age was 8·7years. 71% had a hematologic malignancy, and 20% received SCT. Median duration of fever and illness was 2 and 12·5days, respectively. 51 (51·5%) were hospitalized for a median of 5days, with no deaths and only 1 requiring admission to the intensive care unit. Radiologically confirmed pneumonia was diagnosed in 10 (10%). Interruption of chemotherapy or conditioning occurred in 43 patients. In multivariable analyses, age \u3c5years (relative to ≥10years) and neutropenia were associated with hospitalization while neutropenia was associated with pneumonia. Despite oseltamivir use in 89%, viral shedding was prolonged (median, 46days) and often persisted after symptom resolution. However, an extended treatment course (\u3e5days) correlated with shortened duration of viral shedding (P=0·041). Conclusions pH1N1 infection in pediatric cancer and SCT patients infrequently caused complications but commonly interrupted cancer treatment. Persistent shedding of virus after illness resolution was common. Further research is needed to verify this finding as it could have implications for treatment guidelines and infection control practices. © 2012 Blackwell Publishing Ltd

    Impact of registration on clinical trials on infection risk in pediatric acute myeloid leukemia

    Get PDF
    Little is known about the impact of enrollment on therapeutic clinical trials on adverse event rates. Primary objective was to describe the impact of clinical trial registration on sterile site microbiologically documented infection for children with newly diagnosed acute myeloid leukemia (AML). We conducted a multicenter cohort study that included children aged ≤18 years with de novo AML. Primary outcome was microbiologically documented sterile site infection. Infection rates were compared between those registered and not registered on clinical trials. Five hundred seventy-four children with AML were included of which 198 (34.5%) were registered on a therapeutic clinical trial. Overall, 400 (69.7%) had at least one sterile site microbiologically documented infection. In multiple regression, registration on clinical trials was independently associated with a higher risk of microbiologically documented sterile site infection [adjusted odds ratio (OR) 1.24, 95% confidence interval (CI) 1.01-1.53; p = 0.040] and viridans group streptococcal infection (OR 1.46, 95% CI 1.08-1.98; p = 0.015). Registration on trials was not associated with Gram-negative or invasive fungal infections. Children with newly diagnosed AML enrolled on clinical trials have a higher risk of microbiologically documented sterile site infection. This information may impact on supportive care practices in pediatric AML

    Association between corticosteroids and infection, sepsis, and infectious death in pediatric acute myeloid leukemia (AML): Results from the Canadian infections in AML research group

    Get PDF
    Background. Infection continues to be a major problem for children with acute myeloid leukemia (AML). Objectives were to identify factors associated with infection, sepsis, and infectious deaths in children with newly diagnosed AML.Methods. We conducted a retrospective, population-based cohort study that included children ≤18 years of age with de novo, non-M3 AML diagnosed between January 1995 and December 2004, treated at 15 Canadian centers. Patients were monitored for infection from initiation of AML treatment until recovery from the last cycle of chemotherapy, conditioning for hematopoietic stem cell transplantation, relapse, persistent disease, or death (whichever occurred first). Consistent trained research associates abstracted all information from each site.Results. 341 patients were included. Median age was 7.1 years (interquartile range [IQR], 2.0-13.5) and 29 (8.5%) had Down syndrome. In sum, 26 (7.6%) experienced death as a first event. There were 1277 courses of chemotherapy administered in which sterile site microbiologically documented infection occurred in 313 courses (24.5%). Sepsis and infectious death occurred in 97 (7.6%) and 16 (1.3%) courses, respectively. The median days of corticosteroid administration was 2 per course (IQR, 0-6). In multiple regression analysis, duration of corticosteroid exposure was significantly associated with more microbiologically documented sterile site infection, bacteremia, fungal infection, and sepsis. The only factor significantly associated with infectious death was days of corticosteroid exposure (odds ratio, 1.05; 95% confidence interval, 1.02-1.08; P =. 001).Conclusions. In pediatric AML, infection, sepsis, and infectious death were associated with duration of corticosteroid exposure. Corticosteroids should be avoided when possible for this population. © The Author 2012. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved

    Infections in children with down syndrome and acute myeloid leukemia: A report from the Canadian infections in AML research group

    Get PDF
    Background: Children with Down syndrome (DS) are at high risk of infectious toxicity when treated with acute lymphoblastic leukemia chemotherapy protocols optimized in children without DS. Our objective was to determine if children with DS and acute myeloid leukemia (AML) have a different risk of infection when treated with chemotherapy protocols developed for children with DS compared to AML treatment protocols developed for children without DS. Methods. We conducted a retrospective, population-based cohort study that included DS children ≤ 18 years of age with de novo, non-M3 AML diagnosed between January 1995 and December 2004, and treated at 15 Canadian centers. Patients were monitored for infection from initiation of AML treatment until recovery from the last cycle of chemotherapy, conditioning for hematopoietic stem cell transplantation, relapse, persistent disease or death (whichever occurred first). Trained research associates abstracted all information from each site. Results: There were 31 children with DS included; median age was 1.7 (range 0.1-11.1) years. Eleven were treated according to a DS-specific protocol while 20 were treated with non-DS specific protocols. A total of 157 courses of chemotherapy were delivered. Microbiologically documented sterile site infection occurred in 11.9% and 14.3% of DS-specific and non-DS specific AML treatment courses respectively. Sepsis was rare and there were no infection-related deaths. In multiple regression, treatment with a DS-specific protocol was independently associated with a reduction in microbiologically documented sterile site infection (adjusted odds ratio (OR) 0.65, 95% confidence interval (CI) 0.42-0.99; P = 0.044), and clinically documented infection (adjusted OR 0.36, 95% CI 0.14-0.91; P = 0.031) but not bacteremia (adjusted OR 0.73, 95% CI 0.44-1.22; P = 0.231). Conclusions: Our study suggests that children with DS do not experience excessive infectious toxicity during treatment for AML compared to children without DS. Incorporation of DS-specific AML treatment protocols is associated with a more favorable infection profile for children with DS-AML. © 2013 Tran et al.; licensee BioMed Central Ltd

    Evaluation of Treatment-Related Mortality Among Paediatric Cancer Deaths: a population based analysis.

    Get PDF
    BACKGROUND: Objectives were to describe the proportion of deaths due to treatment-related mortality (TRM) and to identify risk factors and probable causes of TRM among paediatric cancer deaths in a population-based cohort. METHODS: We included children with cancer â©˝18 years diagnosed and treated in Ontario who died between January 2003 and December 2012. Deaths were identified using a provincial registry, the Pediatric Oncology Group of Ontario Networked Information System. Probable causes of TRM were described. RESULTS: Among the 964 deaths identified, 821 were included. The median age at diagnosis was 6.6 years (range 0-18.8) and 51.8% had at least one relapse. Of the deaths examined, TRM occurred in 217/821 (26.4%) while 604/821 (73.6%) were due to progressive cancer. Deaths from TRM did not change over time. Using multiple regression, younger age, leukaemia diagnosis and absence of relapse were independently positively associated with TRM. The most common probable causes of TRM were respiratory, infection and haemorrhage. CONCLUSIONS: TRM was responsible for 26.4% of deaths in paediatric cancer. Underlying diagnosis, younger age and absence of relapse were associated with TRM and causes of TRM differed by diagnosis group. Future work should evaluate TRM rate and risk factors among newly diagnosed cancer patients

    Guideline for the Management of Fever and Neutropenia in Pediatric Patients With Cancer and Hematopoietic Cell Transplantation Recipients: 2023 Update.

    Get PDF
    PURPOSE To update a clinical practice guideline (CPG) for the empiric management of fever and neutropenia (FN) in pediatric patients with cancer and hematopoietic cell transplantation recipients. METHODS The International Pediatric Fever and Neutropenia Guideline Panel reconvened to conduct the second update of this CPG. We updated the previous systematic review to identify new randomized controlled trials (RCTs) evaluating any strategy for the management of FN in pediatric patients. Using the Grading of Recommendations Assessment, Development and Evaluation framework, evidence quality was classified as high, moderate, low, or very low. The panel updated recommendations related to initial management, ongoing management, and empiric antifungal therapy. Changes from the 2017 CPG were articulated, and good practice statements were considered. RESULTS We identified 10 new RCTs in addition to the 69 RCTs identified in previous FN CPGs to inform the 2023 FN CPG. Changes from the 2017 CPG included two conditional recommendations regarding (1) discontinuation of empiric antibacterial therapy in clinically well and afebrile patients with low-risk FN if blood cultures remain negative at 48 hours despite no evidence of marrow recovery and (2) pre-emptive antifungal therapy for invasive fungal disease in high-risk patients not receiving antimold prophylaxis. The panel created a good practice statement to initiate FN CPG-consistent empiric antibacterial therapy as soon as possible in clinically unstable febrile patients. CONCLUSION The updated FN CPG incorporates important modifications on the basis of recently published trials. Future work should focus on addressing knowledge gaps, improving CPG implementation, and measuring the impact of CPG-consistent care

    Clinical Practice Guideline for Systemic Antifungal Prophylaxis in Pediatric Patients With Cancer and Hematopoietic Stem-Cell Transplantation Recipients

    Get PDF
    PURPOSE: To develop a clinical practice guideline for systemic antifungal prophylaxis in pediatric patients with cancer and hematopoietic stem-cell transplantation (HSCT) recipients. METHODS: Recommendations were developed by an international multidisciplinary panel that included a patient advocate. We conducted a systematic review of systemic antifungal prophylaxis in children and adults with cancer and HSCT recipients. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to make strong or weak recommendations and to classify level of evidence as high, moderate, low, or very low. The panel considered directness of the data to pediatric patients. RESULTS: There were 68 randomized trials included in the systematic review, of which 6 (9%) were conducted in a solely pediatric population. Strong recommendations were made to administer systemic antifungal prophylaxis to children and adolescents receiving treatment of acute myeloid leukemia, to those undergoing allogeneic HSCT pre-engraftment, and to those receiving systemic immunosuppression for graft-versus-host disease treatment. A strong recommendation was made to administer a mold-active agent with an echinocandin or a mold-active azole when systemic antifungal prophylaxis is warranted. For children younger than 13 years of age, an echinocandin, voriconazole, or itraconazole is suggested. Posaconazole may also be used in those age 13 years or older. A strong recommendation against routine administration of amphotericin as systemic antifungal prophylaxis was made. CONCLUSION: We developed a clinical practice guideline for systemic antifungal prophylaxis administration in pediatric patients with cancer and HSCT recipients. Implementation and assessment of guideline-concordant rates and impacts are important future steps

    Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients : A systematic review of randomized trials

    Get PDF
    PURPOSE: To determine the efficacy and safety of different prophylactic systemic antibiotics in adult and pediatric patients receiving chemotherapy or undergoing hematopoietic stem cell transplantation (HSCT). METHODS: We conducted a systematic review and performed searches of Ovid MEDLINE, MEDLINE in-process and Embase; and Cochrane Central Register of Controlled Trials. Studies were included if patients had cancer or were HSCT recipients with anticipated neutropenia, and the intervention was systemic antibacterial prophylaxis. Strategies synthesized included fluoroquinolone vs no antibiotic/nonabsorbable antibiotic; fluoroquinolone vs trimethoprim-sulfamethoxazole; trimethoprim-sulfamethoxazole vs no antibiotic; and cephalosporin vs. no antibiotic. Fluoroquinolone vs cephalosporin and levofloxacin vs ciprofloxacin were compared by network meta-analysis. Primary outcome was bacteremia. RESULTS: Of 20 984 citations screened, 113 studies comparing prophylactic antibiotic to control were included. The following were effective in reducing bacteremia: fluoroquinolone vs no antibiotic/nonabsorbable antibiotic (risk ratio (RR) 0.56, 95% confidence interval (CI) 0.41-0.76), trimethoprim-sulfamethoxazole vs no antibiotic (RR 0.59, 95% CI 0.41-0.85) and cephalosporin vs no antibiotic (RR 0.30, 95% CI 0.16-0.58). Fluoroquinolone was not significantly associated with increased Clostridium difficile infection (RR 0.62, 95% CI 0.31-1.24) or invasive fungal disease (RR 1.28, 95% CI 0.79-2.08) but did increase resistance to fluoroquinolone among bacteremia isolates (RR 3.35, 95% CI 1.12 to 10.03). Heterogeneity in fluoroquinolone effect on bacteremia was not explained by evaluated study, population, or methodological factors. Network meta-analysis revealed no direct comparisons for pre-specified analyses; superior regimens were not identified. CONCLUSIONS: Fluoroquinolone, trimethoprim-sulfamethoxazole, and cephalosporin prophylaxis reduced bacteremia. A clinical practice guideline to facilitate prophylactic antibiotic decision-making is required
    • …
    corecore