40 research outputs found

    Coccidioidomycosis Incidence in Arizona Predicted by Seasonal Precipitation

    Get PDF
    The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995–2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a “primary” exposure season that spans August-March and a “secondary” season that spans April–June which are then used in subsequent analyses. We show that October–December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = −0.79, p = 0.004) and Pima (R = −0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the “grow and blow” hypothesis

    Improved eradication of Clostridium difficile spores from toilets of hospitalized patients using an accelerated hydrogen peroxide as the cleaning agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>C. difficle </it>spores in the environment of patients with <it>C. difficile </it>associated disease (CDAD) are difficult to eliminate. Bleach (5000 ppm) has been advocated as an effective disinfectant for the environmental surfaces of patients with CDAD. Few alternatives to bleach for non-outbreak conditions have been evaluated in controlled healthcare studies.</p> <p>Methods</p> <p>This study was a prospective clinical comparison during non-outbreak conditions of the efficacy of an accelerated hydrogen peroxide cleaner (0.5% AHP) to the currently used stabilized hydrogen peroxide cleaner (0.05% SHP at manufacturer recommended use-dilution) with respect to spore removal from toilets in a tertiary care facility. The toilets used by patients who had diarrhea with and without <it>C. difficile </it>associated disease (CDAD) were cultured for <it>C. difficile </it>and were monitored using an ultraviolet mark (UVM) to assess cleaning compliance on a daily basis 5 days per week. A total of 243 patients and 714 samples were analysed. The culture results were included in the analysis only if the UVM audit from the same day confirmed that the toilet had been cleaned.</p> <p>Results</p> <p>Our data demonstrated that the efficacy of spore killing is formulation specific and cannot be generalized. The Oxivir<sub>TB</sub><sup>® </sup>AHP formulation resulted in statistically significantly (p = 0.0023) lower levels of toxigenic <it>C. difficile </it>spores in toilets of patients with CDAD compared to the SHP formulation that was routinely being used (28% vs 45% culture positive). The background level of toxigenic <it>C. difficile </it>spores was 10% in toilets of patients with diarrhea not due to CDAD. The UVM audit indicated that despite the enhanced twice-daily cleaning protocol for CDAD patients cleaning was not achieved on approximately 30 - 40% of the days tested.</p> <p>Conclusion</p> <p>Our data indicate that the AHP formulation evaluated that has some sporicidal activity was significantly better than the currently used SHP formulation. This AHP formulation provides a one-step process that significantly lowers the <it>C. difficile </it>spore level in toilets during non-outbreak conditions without the workplace safety concerns associated with 5000 ppm bleach.</p

    Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: A cohort study

    Get PDF
    BACKGROUND: We hypothesized that among septic ICU patients with Acinetobacter spp. bacteremia (Ac-BSI), carbapenem-resistant Acinetobacter spp. (CRAc) increase risk for inappropriate initial antibiotic therapy (non-IAAT), and non-IAAT is a predictor of hospital death. METHODS: We conducted a retrospective cohort study of adult septic ICU patients with Ac-BSI. Non-IAAT was defined as exposure to initially prescribed antibiotics not active against the pathogen based on in vitro susceptibility testing, and having no exposure to appropriate antimicrobial treatment within 24 hours of drawing positive culture. We compared patients who died to those who survived, and derived regression models to identify predictors of hospital mortality and of non-IAAT. RESULTS: Out of 131 patients with Ac-BSI, 65 (49.6%) died (non-survivors, NS). NS were older (63 [51, 76] vs. 56 [45, 66] years, p = 0.014), and sicker than survivors (S): APACHE II (24 [19, 31] vs. 18 [13, 22], p < 0.001) and Charlson (5 [2, 8] vs. 3 [1, 6], p = 0.009) scores. NS were also more likely than S to require pressors (75.4% vs. 42.4%, p < 0.001) and mechanical ventilation (75.4% vs. 53.0%, p = 0.008). Both CRAc (69.2% vs. 47.0%, p = 0.010) and non-IAAT (83.1% vs. 59.1%, p = 0.002) were more frequent among NS than S. In multivariate analyses, non-IAAT emerged as an independent predictor of hospital death (risk ratio [RR] 1.42, 95% confidence interval [CI] 1.10-1.58), while CRAc was the single strongest predictor of non-IAAT (RR 2.66, 95% CI 2.43-2.72). CONCLUSIONS: Among septic ICU patients with Ac-BSI, non-IAAT predicts mortality. Carbapenem resistance appears to mediate the relationship between non-IAAT and mortality

    Multidrug resistance, inappropriate empiric treatment and hospital mortality in Acinetobacter baumannii pneumonia and sepsis

    Get PDF
    Background: The relationship between multidrug resistance (MDR), inappropriate empiric therapy (IET), and mortality among patients with Acinetobacter baumannii (AB) remains unclear. We examined it using a large U.S. database. Methods: We conducted a retrospective cohort study using the Premier Research database (2009–2013) of 175 U.S. hospitals. We included all adult patients admitted with pneumonia or sepsis as their principal diagnosis, or as a secondary diagnosis in the setting of respiratory failure, along with antibiotic administration within 2 days of admission. Only culture-confirmed infections were included. Resistance to at least three classes of antibiotics defined multidrug-resistant AB (MDR-AB). We used logistic regression to compute the adjusted relative risk ratio (RRR) of patients with MDR-AB receiving IET and IET’s impact on mortality. Results: Among 1423 patients with AB infection, 1171 (82.3 %) had MDR-AB. Those with MDR-AB were older (63.7 ± 15.4 vs. 61.0 ± 16.9 years, p = 0.014). Although chronic disease burden did not differ between groups, the MDR-AB group had higher illness severity than those in the non-MDR-AB group (intensive care unit 68.0 % vs. 59. 5 %, p < 0.001; mechanical ventilation 56.2 % vs. 42.1 %, p < 0.001). Patients with MDR-AB were more likely to receive IET than those in the non-MDR-AB group (76.2 % MDR-AB vs. 13.8 % non-MDR-AB, p < 0.001). In a regression model, MDR-AB strongly predicted receipt of IET (adjusted RRR 5.5, 95 % CI 4.0–7.7, p < 0.001). IET exposure was associated with higher hospital mortality (adjusted RRR 1.8, 95 % CI 1.4–2.3, p < 0.001). Conclusions: In this large U.S. database, the prevalence of MDR-AB among patients with AB infection was > 80 %. Harboring MDR-AB increased the risk of receiving IET more than fivefold, and IET nearly doubled hospital mortality

    Impact of Empiric Antimicrobial Therapy on Outcomes in Patients with Escherichia coli and Klebsiella pneumoniae Bacteremia: A Cohort Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is unclear whether appropriate empiric antimicrobial therapy improves outcomes in patients with bacteremia due to <it>Escherichia coli </it>or <it>Klebsiella</it>. The objective of this study is to assess the impact of appropriate empiric antimicrobial therapy on in-hospital mortality and post-infection length of stay in patients with <it>Escherichia coli </it>or <it>Klebsiella </it>bacteremia while adjusting for important confounding variables.</p> <p>Methods</p> <p>We performed a retrospective cohort study of adult patients with a positive blood culture for <it>E. coli </it>or <it>Klebsiella </it>between January 1, 2001 and June 8, 2005 and compared in-hospital mortality and post-infection length of stay between subjects who received appropriate and inappropriate empiric antimicrobial therapy. Empiric therapy was defined as the receipt of an antimicrobial agent between 8 hours before and 24 hours after the index blood culture was drawn and was considered appropriate if it included antimicrobials to which the specific isolate displayed <it>in vitro </it>susceptibility. Data were collected electronically and through chart review. Survival analysis was used to statistically assess the association between empiric antimicrobial therapy and outcome (mortality or length of stay). Multivariable Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI).</p> <p>Results</p> <p>Among 416 episodes of bacteremia, 305 (73.3%) patients received appropriate empiric antimicrobial therapy. Seventy-one (17%) patients died before discharge from the hospital. The receipt of appropriate antimicrobial agents was more common in hospital survivors than in those who died (p = 0.04). After controlling for confounding variables, there was no association between the receipt of appropriate empiric antimicrobial therapy and in-hospital mortality (HR, 1.03; 95% CI, 0.60 to 1.78). The median post-infection length of stay was 7 days. The receipt of appropriate antimicrobial agents was not associated with shortened post-infection length of stay, even after controlling for confounding (HR, 1.11; 95% CI 0.86 to 1.44).</p> <p>Conclusion</p> <p>Appropriate empiric antimicrobial therapy for <it>E. coli </it>and <it>Klebsiella </it>bacteremia is not associated with lower in-hospital mortality or shortened post-infection length of stay. This suggests that the choice of empiric antimicrobial agents may not improve outcomes and also provides data to support a randomized trial to test the hypothesis that use (and overuse) of broad-spectrum antibiotics prior to the availability of culture results is not warranted.</p

    Genetic Assignment Methods for Gaining Insight into the Management of Infectious Disease by Understanding Pathogen, Vector, and Host Movement

    Get PDF
    For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease

    Empiric Antibiotic Therapy for Staphylococcus aureus Bacteremia May Not Reduce In-Hospital Mortality: A Retrospective Cohort Study

    Get PDF
    Appropriate empiric therapy, antibiotic therapy with in vitro activity to the infecting organism given prior to confirmed culture results, may improve Staphylococcus aureus outcomes. We aimed to measure the clinical impact of appropriate empiric antibiotic therapy on mortality, while statistically adjusting for comorbidities, severity of illness and presence of virulence factors in the infecting strain.We conducted a retrospective cohort study of adult patients admitted to a tertiary-care facility from January 1, 2003 to June 30, 2007, who had S. aureus bacteremia. Time to appropriate therapy was measured from blood culture collection to the receipt of antibiotics with in vitro activity to the infecting organism. Cox proportional hazard models were used to measure the association between receipt of appropriate empiric therapy and in-hospital mortality, statistically adjusting for patient and pathogen characteristics.Among 814 admissions, 537 (66%) received appropriate empiric therapy. Those who received appropriate empiric therapy had a higher hazard of 30-day in-hospital mortality (Hazard Ratio (HR): 1.52; 95% confidence interval (CI): 0.99, 2.34). A longer time to appropriate therapy was protective against mortality (HR: 0.79; 95% CI: 0.60, 1.03) except among the healthiest quartile of patients (HR: 1.44; 95% CI: 0.66, 3.15).Appropriate empiric therapy was not associated with decreased mortality in patients with S. aureus bacteremia except in the least ill patients. Initial broad antibiotic selection may not be widely beneficial

    Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection

    Get PDF
    Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of humoral immune response after intravenous infection by A. baumannii in mice. OmpA was >99% conserved at the amino acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound infections, including carbapenem-resistant isolates, and was ≥89% conserved among other sequenced strains, but had minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously. Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to prevent and treat highly lethal, XDR A. baumannii infections
    corecore