17 research outputs found

    IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice.

    Get PDF
    IL-22 is a recently discovered cytokine that belongs to the family of IL-10 related cytokines. It is produced by activated T-cells and innate lymphoid cells and has been suggested to be involved in tissue repair. As both inflammation and repair play important roles in atherosclerosis we investigated if IL-22 deficiency influences the disease process in Apoe(-/-) mice

    Use of Lung Weight as Biomarker for Assessment of Lung Toxicity in Rat Inhalation Studies

    No full text
    Subacute inhalation study (1 week or 2 weeks) is an important process for screening out inhaled compounds causing lung irritation. To investigate whether the lung weight can be used as an indicator for acute lung injury, we have analyzed retrospectively the lung weight data from 30 studies in rats exposed to dry powder inhalation. The lung weight change was correlated with lung histopathology in the majority of studies (25 of 30), showing as either both changed or both unchanged. The sensitivity and specificity of using the weight change in lungs as biomarker for predicting lung histopathology in these studies were over 80%. The pattern of lung weight change was often similar in the 1- to 2- week studies and the 4-week studies. Our analysis of covariance model showed that a study with 40 rats (5 males + 5 females/group and 4 groups) could detect lung weight change greater than 10% to 20% of control value. These results suggested that lung weight is a useful indicator for identifying acute lung toxic effect by inhaled compounds in these subacute inhalation studies

    Sub-micrometer morphology of human atherosclerotic plaque revealed by synchrotron radiation-based μCT—A comparison with histology

    No full text
    Histology is a long standing and well-established gold standard for pathological characterizations. In recent years however, synchrotron radiation-based micro-computed tomography (SRμCT) has become a tool for extending the imaging of two-dimensional thin sections into three-dimensional imaging of tissue blocks, enabling so-called virtual histology with arbitrary clipping planes, volumetric rendering and automatic segmentation. In this study, we present a thorough characterization of human carotid plaques after endarterectomy of patients with stroke or transient ischemic attack (TIA), investigating several different pathologic structures using both SRμCT and histology. Phase-contrast SRμCT was performed with two different magnifications (voxel sizes 6.5 μm and 0.65 μm, respectively), and histology was performed with multiple different stainings (Alpha-actin, Glycophorin A, von Kossa, Movat, CD68). The 0.65 μm high-resolution SRμCT was performed on selected areas with plaque typical relevant morphology, identified on the 6.5 μm low-resolution SRμCT. The tomography datasets were reconstructed with additional 3D volume rendering and compared to histology. In total, nine different regions with typical pathologic structures were identified and imaged with high-resolution SRμCT. The results show many characteristics typical for advanced atherosclerotic plaques, clinically relevant, namely ruptures with thrombosis, neo-vascularization, inflammatory infiltrates in shoulder regions, lipid rich necrotic cores (LRNC), thin fibrous cap, calcifications, lumen irregularities, and changes in vessel wall structures such as the internal elastic membrane. This method’s non-destructive nature renders details of micro-structures with an excellent visual likeness to histology, with the additional strength of multiplanar and 3D visualization and the possibility of multiple re-scans

    IL-2Rβγ signalling in lymphocytes promotes systemic inflammation and reduces plasma cholesterol in atherosclerotic mice

    No full text
    BACKGROUND AND AIMS: The relationship between inflammation and lipid metabolism is complex and bidirectional. Lymphocyte-driven inflammation has been shown to modulate both atherosclerotic plaque development and cholesterol levels, but the mechanisms are incompletely understood.METHODS: The cardiometabolic effects of IL-2Rβγ signalling in atherosclerotic Apoe-/- mice were investigated by treatment with an agonistic IL-2Rβγ-targeting IL-2/anti-IL-2 complex or a monoclonal anti-CD122 (IL-2Rβ) blocking antibody.RESULTS: Administration of IL-2Rβγ agonistic IL-2/anti-IL-2 complexes to Apoe-/- mice augmented opposing arms of the adaptive immune system. Expansion of effector/memory T cells and increased levels of circulating pro-inflammatory cytokines were observed along with elevated levels of regulatory T cells and IL-10. Notably, IL-2/anti-IL-2 treatment did not affect plaque size but decreased levels of plasma cholesterol. The cholesterol lowering effect of IL-2Rβγ agonism was not affected by anti-CD8 or anti-NK1.1 depleting antibody treatment but was contingent on the presence of adaptive immunity. Expression of multiple liver X receptor (LXR)-related genes, including Pltp and Srebp1c in the liver, was decreased by IL-2/anti-IL-2 treatment. Although IL-2Rβγ agonism lowered cholesterol levels, blocking IL-2Rβγ signalling using an anti-CD122 monoclonal antibody did not impact cholesterol levels or plaque burden in Apoe-/- mice.CONCLUSIONS: Elevated IL-2Rβγ signalling results in activation of both inflammatory and regulatory lymphocytes with a net zero effect on atherosclerosis and decreased plasma cholesterol levels. Changes in cholesterol levels were associated with reductions in hepatic LXR-related gene expression. Further studies are needed to investigate the clinical significance of IL-2 mediated modulation of hepatic LXR signalling in inflammatory disorders

    Classifications of atherosclerotic plaque components with T1 and T2* mapping in 11.7 T MRI

    No full text
    Background and aims: Histopathology is the gold standard for analysis of atherosclerotic plaques but has drawbacks due to the destructive nature of the method. Ex vivo MRI is a non-destructive method to image whole plaques. Our aim was to use quantitative high field ex vivo MRI to classify plaque components, with histology as gold standard.Methods: Surgically resected carotid plaques from 12 patients with recent TIA or stroke were imaged at 11.7 T MRI. Quantitative T1/T2* mapping sequences and qualitative T1/T2* gradient echo sequences with voxel size of 30 × 30 × 60 μm3 were obtained prior to histological preparation, sectioning and staining for lipids, inflammation, hemorrhage, and fibrous tissue. Regions of interest (ROI) were selected based on the histological staining at multiple levels matched between histology and MRI. The MRI parameters of each ROI were then analyzed with quadratic discriminant analysis (QDA) for classification.Results: A total of 965 ROIs, at 70 levels matched between histology and MRI, were registered based on histological staining. In the nine plaques where three or more plaque components were possible to co-localize with MRI, the mean degree of misclassification by QDA was 16.5 %. One of the plaques contained mostly fibrous tissue and lipids and had no misclassifications, and two plaques mostly contained fibrous tissue. QDA generally showed good classification for fibrous tissue and lipids, whereas plaques with hemorrhage and inflammation had more misclassifications.Conclusion: 11.7 T ex vivo high field MRI shows good visual agreement with histology in carotid plaques. T1/T2* maps analyzed with QDA is a promising non-destructive method to classify plaque components, but with a higher degree of misclassifications in plaques with hemorrhage or inflammation

    Interleukin-25 (IL-25) has a protective role in atherosclerosis development in the aortic arch in mice

    No full text
    Atherosclerosis is a chronic inflammatory disease characterized by the entrapment of apolipoprotein B– containing lipoproteins in the arterial intima, leading to local inflammation. T helper (Th) cell 1–mediated immune responses have been associated with atherosclerosis, and the cytokine interleukin-25 (IL-25 or IL-17E) has been reported to potentially regulate Th1 cell– and Th17 cell–related immune responses. In this study, we evaluated the effects of complete IL-25 deficiency or of a temporal IL-25 blockade on atherosclerosis development in apolipoprotein E– deficient (Apoe/) mice. Mice deficient in both apolipoprotein E and IL-25 (Apoe//IL-25/) had more Th1 cells in the spleen, along with elevated plasma levels of IL-17 and an increased release of splenic interferon- (INF-). In support of this observation, a 4-week-long treatment of young Apoe/ mice (at 10 –14 weeks of age) with an IL-25– blocking antibody increased the release of Th1/Th17-associated cytokines in the spleen. In both mouse models, these findings were associated with increased atherosclerotic plaque formation in the aortic arch. We conclude that complete IL-25 deficiency and a temporal IL-25 blockade during early plaque development aggravate atherosclerosis development in the aortic arch of Apoe/ mice, accompanied by an increase in Th1/Th17-mediated immune responses. Our finding that endogenous IL-25 has an atheroprotective role in the murine aortic arch has potential implications for atherosclerosis development and management in humans

    IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    No full text
    IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s) as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apo)E deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC) natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses

    Lack of Ability to Present Antigens on Major Histocompatibility Complex Class II Molecules Aggravates Atherosclerosis in ApoE-/- Mice

    No full text
    BACKGROUND: Hypercholesterolemic mice lacking factors required for activation of CD4+ T cells are characterized by reduced development of atherosclerosis. Consequently, it has been assumed that atherosclerosis involves loss of tolerance against modified self-antigens generated in response to hypercholesterolemia and that presentation of such antigens on major histocompatibility complex class II (MHCII) leads to activation of proatherogenic Th1 cells. In this study, we wanted to determine the role of antigen presentation on MHCII in atherosclerosis development.METHODS: Apolipoprotein E (ApoE-/-) mice deficient for MHCII (ApoE-/-MHCII-/-) were used to study the role of MHCII in atherosclerosis development.RESULTS: Compared with ApoE-/- mice, ApoE-/-MHCII-/- mice had reduced levels of CD4+ T cells, immunoglobulin G and M levels, and Th1 and Th2 cytokines in plasma. CD8+ T cells were increased and regulatory T cells were reduced both in spleen and in lesions of ApoE-/-MHCII-/- mice. Decreased plasma levels of inflammatory cytokines in ApoE-/-MHCII-/- mice indicated reduced systemic inflammation. Despite this, ApoE-/-MHCII-/- mice had significantly more atherosclerosis as assessed by en face Oil Red O staining of the aorta (4.7±2.9% versus 1.9±1.3%; P<0.01) and cross-sectional area of subvalvular lesions (7.7±2.2×105 µm2 versus 4.6±2.8×105 µm2; P<0.05). Cell transfer and blocking antibody studies suggested that loss of regulatory T cells is the most important cause of aggravated atherosclerosis in ApoE-/-MHCII-/- mice.CONCLUSIONS: Our observations demonstrate that antigen presentation on MHCII has important protective functions in atherosclerosis and that this is primarily the result of activation of regulatory T cells. These findings have implications for understanding the possible risks and benefits of immunosuppressive therapy in patients with cardiovascular disease

    B cells treated with CTB-p210 acquire a regulatory phenotype in vitro and reduce atherosclerosis in apolipoprotein E deficient mice

    No full text
    Objective: Intranasal immunization with a fusion protein of the ApoB100-derived peptide p210 and the cholera toxin B subunit (CTB-p210) has previously been shown to induce mucosal tolerance and reduce atherosclerosis development, but the exact mode of action remains to be elucidated. Recent studies have indicated an important role for B cells in mucosal tolerance, in particular by induction of regulatory B (Bregs) and T cells (Tregs). In this study, we aimed to investigate if transfer of B cells pulsed with CTB-p210 can protect against atherosclerosis. Method and results: First, we studied if CTB-p210 can induce Bregs and Tregs in vitro. After pulsing B cells from Apobtm2Sgyldlr−/− or Apoe−/− mice with CTB-p210 for 1 h and co-culturing them with naïve T cells for 48 h, we observed increased expression of membrane bound TGFβ/latency-associated peptide (mTGFβ/LAP) on B cells and an increased proportion of CD25hiFoxP3+ Tregs. Adoptive transfer of B cells pulsed with CTB-p210 into high-fat diet-fed Apoe−/− mice at 8, 10 and 12 weeks of age, reduced the plaque area in the aorta at 20 weeks of age as compared with control-treated (CTB-pOVA treated B cells or PBS) mice. Moreover, mice receiving p210-CTB treated B cells had increased levels of anti-p210 IgG antibodies. Conclusion: Our observations suggest that CTB-p210 pulsed B cells acquire a regulatory phenotype and induce Tregs in vitro. Adoptive transfer of CTB-p210, but not control-treated, B cells into Apoe−/− mice decreased atherosclerosis development

    IL-25 induces an expansion of ILC2s in the spleen.

    No full text
    <p><b>A</b>) Gating strategy to identify ILC2s in the spleen with flow cytometry. Leukocytes were gated in the forward (FS)/side scatter (SS) plot, and thereafter the CD45<sup>+</sup>, lineage negative cells (Lin-) expressing IL-17RB, intermediate IL-7ra and ICOS were identified. The ILC2s after a one-week treatment with 1μg rmIL-25 per day or equal volume of the control medium is shown. <b>B</b>) The frequency of ILC2s in the spleen after a 4-weeks treatment of old apoE deficient mice, <b>C</b>) the frequency of ILC2s in one-week treated young and <b>D</b>) old apoE deficient mice. <b>E</b>) The numbers of ILC2s in the spleen after a 4-weeks treatment of old apoE deficient mice, <b>F</b>) the numbers of ILC2s in one-week treated young and <b>G</b>) old apoE deficient mice. <b>H</b>) The frequency of ILC2s in the spleen of one-week treated apoE/Rag-1 deficient and IL-5 deficient mice. <b>I</b>) The numbers of ILC2s in the spleen of one-week treated apoE/Rag-1 deficient and IL-5 deficient mice. <b>J</b>) Fold change of the frequency (black bars) or numbers (grey bars) of ILC2s in the spleen of one-week IL-25 treated young (11–12 weeks of age) and old (25–26 weeks of age) apoE deficient, apoE/Rag-1 deficient and IL-5 deficient mice compared to the control mice, respectively. Each dot in the figure represents one mouse and the bar the median value. *<i>P</i><0.05, **<i>P</i><0.01; ***<i>P</i><0.001, ****<i>P</i><0.0001.</p
    corecore