384 research outputs found

    Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail

    Get PDF
    Reproducibility of in vivo\textit{in vivo} research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo\textit{in vivo} research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.This work was supported in part by US National Institutes of Health grants R01 AR049288, CA089713 and R21 AR063781 (to J.P.S.) and by The Warden and Fellows of Robinson College, Cambridge (to P.N.S.)

    Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice

    Get PDF
    SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-kappa B activity. SHARPIN-deficient (Sharpin(cpdm/cpdm)) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpin(cpdm/cpdm) mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpin(cpdm/cpdm) phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1(-/-) Sharpin(cpdm/cpdm) double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpin(cpdm/cpdm) skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpin(cpdm/cpdm) mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpin(cpdm/cpdm) mice

    Cardiac fibrosis in aging mice

    Get PDF
    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.The authors thank Jesse Hammer and Josiah Raddar for technical assistance. Research reported in this publication was supported by the Ellison Medical Foundation, Parker B. Francis Foundation, and the National Institutes of Health (R01AR055225 and K01AR064766). Mouse colonies were supported by the National Institutes of Health under Award Number AG025707 for the Jackson Aging Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Jackson Laboratory Shared Scientific Services were supported in part by a Basic Cancer Center Core Grant from the National Cancer Institute (CA34196).This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00335-016-9634-

    Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program

    Get PDF
    The International Knockout Mouse Consortium was formed in 2007 to inactivate (“knockout”) all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.This work was supported by grants from the National Institutes of Health (R21-AR063781 and U42-OD011185). Shared services at The Jackson Laboratory are subsidized by a National Cancer Institute Core Grant (P30-CA034196). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A new method to explore the spectral impact of the piriform fossae on the singing voice : Benchmarking using MRI-based 3D-printed vocal tracts

    Get PDF
    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4–5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output

    Proteotypic classification of spontaneous and transgenic mammary neoplasms

    Get PDF
    INTRODUCTION: Mammary tumors in mice are categorized by using morphologic and architectural criteria. Immunolabeling for terminal differentiation markers was compared among a variety of mouse mammary neoplasms because expression of terminal differentiation markers, and especially of keratins, provides important information on the origin of neoplastic cells and their degree of differentiation. METHODS: Expression patterns for terminal differentiation markers were used to characterize tumor types and to study tumor progression in transgenic mouse models of mammary neoplasia (mice overexpressing Neu (Erbb2), Hras, Myc, Notch4, SV40-TAg, Tgfa, and Wnt1), in spontaneous mammary carcinomas, and in mammary neoplasms associated with infection by the mouse mammary tumor virus (MMTV). RESULTS: On the basis of the expression of terminal differentiation markers, three types of neoplasm were identified: first, simple carcinomas composed exclusively of cells with a luminal phenotype are characteristic of neoplasms arising in mice transgenic for Neu, Hras, Myc, Notch4, and SV40-TAg; second, 'complex carcinomas' displaying luminal and myoepithelial differentiation are characteristic of type P tumors arising in mice transgenic for Wnt1, neoplasms arising in mice infected by the MMTV, and spontaneous adenosquamous carcinomas; and third, 'carcinomas with epithelial to mesenchymal transition (EMT)' are a characteristic feature of tumor progression in Hras-, Myc-, and SV40-TAg-induced mammary neoplasms and PL/J and SJL/J mouse strains, and display de novo expression of myoepithelial and mesenchymal cell markers. In sharp contrast, EMT was not detected in papillary adenocarcinomas arising in BALB/cJ mice, spontaneous adenoacanthomas, neoplasms associated with MMTV-infection, or in neoplasms arising in mice transgenic for Neu and Wnt1. CONCLUSIONS: Immunohistochemical profiles of complex neoplasms are consistent with a stem cell origin, whereas simple carcinomas might originate from a cell committed to the luminal lineage. In addition, these results suggest that the initiating oncogenic events determine the morphologic features associated with cancer progression because EMT is observed only in certain types of neoplasm
    • …
    corecore