120 research outputs found

    Rural Drinking Water Situation: Challenges and Opportunities in West Bengal

    Get PDF

    A POTENT CYTOTOXICITY AND ANTIMICROBIAL ACTIVITY OF ZINC OXIDE NANOPARTICLES SYNTHESIZED BY LEAF OF IPOMOEA PES-CAPRAE (L.) R. BR.

    Get PDF
    Objective: The present study was conducted to investigate the cytotoxicity and antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) synthesized as eco-friendly technique from the leaf extract of Ipomoea pes-caprae (L.) R. Br. against human lung adenocarcinoma (A549), brain tumor (U87) cells, and human pathogens Salmonella typhi, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, and Bacillus subtilis. Materials and Methods: The work was carried out with varying precursor (plant extract) volume to optimize the synthesis of ZnO NPs and it was confirmed by ultraviolet (UV)-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy, and atomic force microscope (AFM) characterization techniques and evaluate its cytotoxicity activity by 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl--tetrazolium bromide assay method, antimicrobial activity by disk diffusion method. Results: A peak at 320 nm with maximum intensity was observed at temperature of 80°C with pH of 8.0 in UV-visible spectroscopy confirmed the formation of ZnO NPs and we calculate the size of ZnO NPs from XRD data found as 15.8 nm. The FTIR analysis evaluated that the presence of different functional groups is carboxyl, amine, and phenolic compounds of leaves extract which are involved in the reduction of zinc ions and acts as capping the ZnO NPs. AFM microgram confirms that ZnO NPs were in nanorange and spherical in nature. The cytotoxicity activity of A549 and U87 cell lines treated with various concentrations of ZnO NPs showed a dose-dependent increase in cell inhibition and the half maximal inhibitory concentration value was calculated to be 7.8 μg/ml. The antibacterial activity of selected pathogens shows higher zone of inhibition. Conclusion: The present study reveals that synthesized ZnO NPs capping with various bioactive compounds present in the leaf of I. pes-caprae show promising activity of cancer cell lines and antimicrobial agents; hence, further detailed study may lead to develop at a novel phytomedicine for the anticancer and antimicrobial drugs

    A Fragment of the LG3 Peptide of Endorepellin Is Present in the Urine of Physically Active Mining Workers: A Potential Marker of Physical Activity

    Get PDF
    Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival

    The rank reversal problem in multi-criteria decision making : a literature review

    Get PDF
    Despite the importance of multicriteria decision-making (MCDM) techniques for constructing effective decision models, there are many criticisms due to the occurrence of a problem called rank reversal. Nevertheless, there is a lack of a systematic literature review on this important subject which involves different methods. This study reviews the pertinent literature on rank reversal, based on 130 related articles published from 1980 to 2015 in international journals, which were gathered and analyzed according to the following perspectives: multicriteria technique, year and journal in which the papers were published, co-authorship network, rank reversal types, and research goal. Thus our survey provides recommendations for future research, besides useful information and knowledge regarding rank reversal in the MCDM field

    Glycodelin A triggers T cell apoptosis through a novel calcium-independent galactose-binding lectin activity

    No full text
    Glycodelin A (GdA) is one of the progesterone inducible endometrial factors that protect the fetal semiallograft from maternal immune rejection. The immumoregulatory effects of GdA are varied, with diverse effects on the fate and function of most immune cell types. Its effects on T cells are particularly relevant as it is capable of regulating T cell activation, differentiation, as well as apoptosis. We have previously reported that GdA triggers mitochondrial stress and apoptosis in activated T cells by a mechanism that is distinct and independent of its effects on T cell activation. In this study we describe the characterization of a cell surface receptor for GdA on T cells. Our results reveal a novel calcium-independent galactose-binding lectin activity of GdA, which is responsible for its apoptogenic function. This discovery adds GdA to a select group of soluble immunoregulatory lectins that operate within the feto-placental compartment, the only other members being the galectin family proteins. We also report for the first time that both CD4(+) and CD8(+) T cell subsets are equally susceptible to inhibition with GdA, mediated by its novel lectin activity. We demonstrate that GdA selectively recognizes complex-type N-linked glycans on T cell surface glycoproteins. and propose that the galectin-1 glycoprotein receptor CD7 maybe a novel target for GdA on T cells. This study, for the first time, links the lectin activity of GdA to its biological function

    Glycodelin A, Not Glycodelin S, Is Apoptotically Active

    No full text
    Glycodelin, previously known as PP14 (placental protein- 14), is a kernel lipocalin secreted by the glandular epithelium of the endometrium upon progesterone stimulation and by the seminal vesicles. The isoform of the protein present in female reproductive tissue, glycodelin A (GdA), and the male counterpart, glycodelin S GdS), have identical amino acid sequences, but strikingly different N-linked glycans. It is well documented in literature that GdA is an immunosuppressive protein, and we have shown that this activity is due to its ability to induce apoptosis in activated T cells. The precise role of GdS in seminal plasma is not known. In this study, we report that GdS is not apoptotically active. We observe that the apoptotic activity requires the presence of sialic acid residues on the complex glycans, as in the case of GdA; however, complex glycans of GdS are nonsialylated. We have expressed the wild-type protein in Pichia pastoris, which does not add sialic acid to the secreted proteins, and confirmed our observations that the protein is apoptotically inactive in the non-sialylated form. Our results indicate that differential glycosylation modulates the function of the different glycodelin isoforms
    corecore