111 research outputs found
Embryonic Development of Discus, Symphysodon aequifasciatus Pellegrin, 1904 in Indian Condition
The experiment was conducted to investigate the embryonic development of discus
(Symphysodon aequifasiatus) and determine the time required for major egg
developmental stages and hatching. Regular observations were made using optical
microscope and the images were recorded using a digital camera attached to the
microscope. Important water quality parameters were kept optimal for the hatching of
discus eggs. Newly laid eggs were oval-shaped and yellow in colour with an average
diameter of 1.37 ± 0.14 mm. The embryonic development of fertilized eggs was divided
into 16 stages and the development of each stage was recorded in times lapse. The result
revealed that cleavage occurred after 1hr after fertilization followed by development of
blastula and gastrula at 20.5 hr and 24 hr after fertilization respectively. The period of
organogenesis started with the formation of embryonic notochord from 37.5 hrs after
fertilization. The appearance of a defined head and tail of the embryo with 19 somites was
observed at 40.0 hrs after fertilization, whereas heart beat along with blood circulation
appeared after 55.5 hrs after fertilization. The eggs hatched after 69.06 hr after
fertilization
Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China
The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems
Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river
The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit
From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications
This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities
Nanofibrous scaffold with incorporated protein gradient for directing neurite outgrowth
10.1007/s13346-011-0017-3Drug Delivery and Translational Research12147-16
- …