52 research outputs found

    Generation of a Cell Culture-Adapted Hepatitis C Virus with Longer Half Life at Physiological Temperature

    Get PDF
    BACKGROUND: We previously reported infectious HCV clones that contain the convenient reporters, green fluorescent protein (GFP) and Renilla luciferase (Rluc), in the NS5a-coding sequence. Although these viruses were useful in monitoring viral proliferation and screening of anti-HCV drugs, the infectivity and yield of the viruses were low. METHODOLOGY/PRINCIPAL FINDINGS: In order to obtain a highly efficient HCV cultivation system, we transfected Huh7.5.1 cells [1] with JFH 5a-GFP RNA and then cultivated cells for 20 days. We found a highly infectious HCV clone containing two cell culture-adapted mutations. Two cell culture-adapted mutations which were responsible for the increased viral infectivity were located in E2 and p7 protein coding regions. The viral titer of the variant was ∼100-fold higher than that of the parental virus. The mutation in the E2 protein increased the viability of virus at 37°C by acquiring prolonged interaction capability with a HCV receptor CD81. The wild-type and p7-mutated virus had a half-life of ∼2.5 to 3 hours at 37°C. In contrast, the half-life of viruses, which contained E2 mutation singly and combination with the p7 mutation, was 5 to 6 hours at 37°C. The mutation in the p7 protein, either singly or in combination with the E2 mutation, enhanced infectious virus production about 10-50-fold by facilitating an early step of virion production. CONCLUSION/SIGNIFICANCE: The mutation in the E2 protein generated by the culture system increases virion viability at 37°C. The adaptive mutation in the p7 protein facilitates an earlier stage of virus production, such as virus assembly and/or morphogenesis. These reporter-containing HCV viruses harboring adaptive mutations are useful in investigations of the viral life cycle and for developing anti-viral agents against HCV

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Alcohol Intake and Serum Glucose Levels from the Perspective of a Mendelian Randomization Design: The KCPS-II Biobank.

    No full text
    Previous studies have suggested that alcohol intake is associated with increased fasting serum glucose (FSG), but the nature of the relationship remains unknown. We used Mendelian randomization analysis to assess the causal effect of alcohol intake on FSG in a middle-aged Korean population.Clinical data including FSG and alcohol intake were collected from 156,386 Koreans aged 20 years or older who took part in the Korean Cancer Prevention Study-II (KCPS-II) Biobank Cohort. The single nucleotide polymorphism rs671 in ALDH2 was genotyped among 2,993 men and 1,374 women in 2016. This was a randomly selected subcohort of KCPS-II Biobank participants.Alcohol consumption was positively associated with FSG level in men, but not in women. The rs671 major G allele was associated with increased alcohol intake (F-statistic = 302.62) and an increase in FSG in men. Using Mendelian randomization analysis, alcohol intake increased FSG by 1.78 mg/dL per alcohol unit (10 g ethanol) per day (95% CI: 0.97-2.59) in men. The associations became stronger when we excluded heavy drinkers and the elderly. However, in women, no significant association between rs671 and alcohol or serum glucose was found.Using Mendelian randomization analysis, we suggest a causal relationship between alcohol intake and FSG among Korean men. Moreover, we found that the ALDH2 variant rs671 was not associated with FSG among Korean women

    Association of alcohol (10g ethanol) with fasting serum glucose using Mendelian Randomization analysis.

    No full text
    <p>Association of alcohol (10g ethanol) with fasting serum glucose using Mendelian Randomization analysis.</p

    Alcohol consumption and general characteristics by ALDH2 polymorphism at rs671 in men and women from the KCPS-II Biobank.

    No full text
    <p>Alcohol consumption and general characteristics by ALDH2 polymorphism at rs671 in men and women from the KCPS-II Biobank.</p

    Mendelian randomization of alcohol intake and fasting serum glucose in men: the KCPS-II Biobank.

    No full text
    <p>Mendelian randomization of alcohol intake and fasting serum glucose in men: the KCPS-II Biobank.</p

    eIF2A mediates translation of hepatitis C viral mRNA under stress conditions

    No full text
    Under stress conditions, global mRNA translation is suppressed due to phosphorylation of the eukaryotic translation initiation factor 2 (eIF2). Hepatitis C virus mRNA can still be translated under these conditions via a mechanism that involves eIF2A, an alternative initiator tRNA-binding protei
    corecore