8,871 research outputs found

    Computer games: A double-edged sword?

    Get PDF
    Excessive computer game playing (ECGP) has already become a serious social problem. However, limited data from experimental lab studies are available about the negative consequences of ECGP on players' cognitive characteristics. In the present study, we compared three groups of participants (current ECGP participants, previous ECGP participants, and control participants) on a Multiple Object Tracking (MOT) task. The previous ECGP participants performed significantly better than the control participants, which suggested a facilitation effect of computer games on visuospatial abilities. Moreover, the current ECGP participants performed significantly worse than the previous ECGP participants. This more important finding indicates that ECGP may be related to cognitive deficits. Implications of this study are discussed. © 2008 Mary Ann Liebert, Inc.published_or_final_versio

    Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality

    Full text link
    © 2018 Elsevier Ltd The sorptive removal of dissolved organic matter (DOM) in biologically-treated effluent was studied by using multi-walled carbon nanotube (MWCNT), carboxylic functionalised MWCNT (MWCNT-COOH), hydroxyl functionalized MWCNT (MWCNT-OH) and functionalized biochar (fBC). DOM was dominated by hydrophilic fraction (79.6%) with a significantly lower hydrophobic fraction (20.4%). The sorption of hydrophobic DOM was not significantly affected by the sorbent functionality (∼10.4% variation) and sorption capacity followed the order of MWCNT > MWCNT-COOH > MWCNT-OH > fBC. In comparison, the sorption of hydrophilic fraction of DOM changed significantly (∼37.35% variation) with the change of sorbent functionality with adsorption capacity decreasing as MWCNT-OH > MWCNT-COOH > MWCNT > fBC. Furthermore, the affinity of adsorbents toward a hydrophilic compound (dinitrobenzene), a hydrophobic compound (pyrene) and humic acid was also evaluated to validate the proposed mechanisms. The results provided important insights on the type of sorbents which are most effective to remove different DOM fractions

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Here we aimed to firstly investigate the role of miR-27a in proliferation and multidrug resistance of gastric cancer cells.</p> <p>Methods</p> <p>The role of miR-27a in gastric cancer cells was detected using MTT assay, soft agar assay, flow cytometry assay, nude mice assay, real-time PCR, western blot and reporter gene assay, etc.</p> <p>Results</p> <p>Down-regulation of miR-27a could inhibit porliferation of gastric cancer cells in vitro and in vivo. Down-regulation of miR-27a could also confer sensitivity of drugs on gastric cancer cells, and might increase accumulation and decrease releasing amount of adriamycin in gastric cancer cells. Down-regulation of miR-27a could significantly decrease the expression of P-glycoprotein and the transcriptional activity of cyclin D1, and up-regulate the expression of p21.</p> <p>Conclusions</p> <p>MiR-27a might play important roles in porliferation and drug resistance of gastric cancer. MiR-27a might be considered as a useful target for cancer therapy.</p

    Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis

    Get PDF
    Background: Cronobacter sakazakii and C. malonaticus can cause serious diseases especially in infants where they are associated with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis. Methods: This study used 104 whole genome sequenced strains, covering all seven species in the genus, to analyse capsule associated clusters of genes involved in the biosynthesis of the O-antigen, colanic acid, bacterial cellulose, enterobacterial common antigen (ECA), and a previously uncharacterised K-antigen. Results: Phylogeny of the gnd and galF genes flanking the O-antigen region enabled the defining of 38 subgroups which are potential serotypes. Two variants of the colanic acid synthesis gene cluster (CA1 and CA2) were found which differed with the absence of galE in CA2. Cellulose (bcs genes) were present in all species, but were absent in C. sakazakii sequence type (ST) 13 and clonal complex (CC) 100 strains. The ECA locus was found in all strains. The K-antigen capsular polysaccharide Region 1 (kpsEDCS) and Region 3 (kpsMT) genes were found in all Cronobacter strains. The highly variable Region 2 genes were assigned to 2 homology groups (K1 and K2). C. sakazakii and C. malonaticus isolates with capsular type [K2:CA2:Cell+] were associated with neonatal meningitis and necrotizing enterocolitis. Other capsular types were less associated with clinical infections. Conclusion: This study proposes a new capsular typing scheme which identifies a possible important virulence trait associated with severe neonatal infections. The various capsular polysaccharide structures warrant further investigation as they could be relevant to macrophage survival, desiccation resistance, environmental survival, and biofilm formation in the hospital environment, including neonatal enteral feeding tubes

    Influences of affiliated components and train length on the train wind

    Get PDF
    The induced airflow from passing trains, which is recognized as train wind, usually has adverse impacts on people in the surroundings, i.e., the aerodynamic forces generated by a high-speed train&#39;s wind may act on the human body and endanger the safety of pedestrians or roadside workers. In this paper, an improved delayed detached eddy simulation (IDDES) method is used to study train wind. The effects of the affiliated components and train length on train wind are analyzed. The results indicate that the affiliated components and train length have no effect on train wind in the area in front of the leading nose. In the downstream and wake regions, the longitudinal train wind becomes stronger as the length of the train increases, while the transverse train wind is not affected. The presence of affiliated components strengthens the train wind in the near field of the train because of strong flow solid interactions but has limited effects on train wind in the far field.</span

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.

    Get PDF
    Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents
    corecore