131 research outputs found

    Dialkylaluminium 2-imidazolylphenolates: Synthesis, characterization and ring-opening polymerization behavior towards lactides

    Get PDF
    The stoichiometric reaction of the 2-imidazolylphenols (L1–L9) with the trialkylaluminium reagents AlR₃ (R = Me, Et and iBu), afforded the corresponding dialkylaluminium 2-imidazolylphenolate complexes [R₂Al(L1–L9)] (C1–C11), which were characterized by ¹H/¹³C NMR spectroscopy and by elemental analysis. The molecular structures of the representative complexes C1, C2, C4, C6 and C11 were determined by single-crystal X-Ray diffraction, and revealed a distorted tetrahedral geometry at aluminum. These dialkylaluminium 2-imidazolylphenolates (C1–C11) could efficiently catalyze the ring-opening polymerization of lactides to afford high molecular weight polylactide, both in the presence and absence of BnOH, and as such represent rare examples of the use of bi-dentate ligation at aluminum in such lactide polymerization systems. On the basis of the polymerization results for l-lactide, d-lactide and rac-lactide, the nature of the ligands and the aluminum bound alkyls were found to significantly affect the catalytic activity as well as the properties of the resultant polylactides

    Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology

    Get PDF
    We conducted an experimental study on the breakdown process of oil shale by high-voltage power frequency electric heating in-situ pyrolyzing (HVF) technology to examine the impact mechanisms of the electric field intensity, initial temperature, and moisture content on a breakdown, using Huadian oil shale samples. A thermal breakdown occurred when the electric field intensity was between 100 and 180 V/cm. The greater the electric field intensity, the easier the thermal breakdown and the lower the energy consumption. The critical temperature of the oil shale thermal breakdown ranged from 93 to 102 °C. A higher initial temperature increases the difficulty of breakdown, which is inconsistent with the classical theory of a solid thermal breakdown. The main factor that affects the electrical conductivity of oil shale is the presence of water, which is also a necessary condition for the thermal breakdown of oil shale. There should be an optimal moisture content that minimizes both the breakdown time and energy consumption for oil shale’s thermal breakdown. The thermal breakdown of oil shale results from heat generation and dissipation. The electric field intensity only affects the heat generation process, whereas the initial temperature and moisture content impact both the heat generation and dissipation processes, and the impacts of moisture content are greater than those of the initial temperature.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Analysis on Heat Characteristics for Summer Maize Cropping in a Semi-Arid Region

    Get PDF
    Heat stress during flowering is a critical limitation for summer maize production. However, the incidence of heat varies with years and locations, and it poses a great risk to successful maize reproduction and kernel setting. Therefore, it is essential to provide a sound quantification of heat occurrence in relation to maize growth and development. Here, we analyzed the characteristics of heat occurrence based on climate data for over 60 years on Huaibei Plain, China. The effective accumulated temperature showed a slight interannual variation. The average maximum temperature (Tmax) during flowering was 32◦C–33◦C, which was approximately 2◦C higher than that over the whole growing season. The probability (P) for the daily Tmax > 33◦C during flowering was closer to 50% and this maximum temperature ranged between 33◦C and 37◦C. The five levels from normal to extreme heat for Tmax were defined. Across the six studied sites, the mild level heat stress accounted for most of incidents (P, 25–50%), followed by moderate (P, 13–25%) and severe (P, 0.5–13%), and the minimum for extreme heat stress (P, 0.5%). Four phases bracketing flowering during maize development were given, i.e., 1 week prior to anthesis, 1 week during anthesis, 1 week for anthesis-silking, and 1week post silking. There was a greater probability for heat stress incidents from anthesis to silking compared to the other developmental stages. Additionally, maize grain yield slightly increased with the increase in Tmax to 33◦C, but it declined as Tmax surpassed 33◦C. In conclusion, the pattern and characteristics of heat stress were quantified bracketing maize flowering. These findings assist to advise summer maize cropping strategies on the semi-arid and semi-humid Huaibei Plain, China or similar climate and cropping regions

    Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells

    Get PDF
    Oncolytic adenovirus and apoptosis inducer TRAIL are promising cancer therapies. Their antitumor efficacy, when used as single agents, is limited. Oncolytic adenoviruses have low infection activity, and cancer cells develop resistance to TRAIL-induced apoptosis. Here, we explored combining prostate-restricted replication competent adenovirus-mediated TRAIL (PRRA-TRAIL) with lovastatin, a commonly used cholesterol-lowering drug, as a potential therapy for advanced prostate cancer (PCa). Lovastatin significantly enhanced the efficacy of PRRA-TRAIL by promoting the in vivo tumor suppression, and the in vitro cell killing and apoptosis induction, via integration of multiple molecular mechanisms. Lovastatin enhanced PRRA replication and virus-delivered transgene expression by increasing the expression levels of CAR and integrins, which are critical for adenovirus 5 binding and internalization. Lovastatin enhanced TRAIL-induced apoptosis by increasing death receptor DR4 expression. These multiple effects of lovastatin on CAR, integrins and DR4 expression were closely associated with cholesterol-depletion in lipid rafts. These studies, for the first time, show correlations between cholesterol/lipid rafts, oncolytic adenovirus infection efficiency and the antitumor efficacy of TRAIL at the cellular level. This work enhances our understanding of the molecular mechanisms that support use of lovastatin, in combination with PRRA-TRAIL, as a candidate strategy to treat human refractory prostate cancer in the future

    Hydrate dissociation induced by gas diffusion from pore water to drilling fluid in a cold wellbore

    Get PDF
    It is a common view that the high temperature of the drilling fluid can lead to the dissociation of gas hydrate during drilling through hydrate-bearing sediments. This study indicates that the hydrate dissociation in wellbore can also be induced by gas diffusion from pore water to drilling fluid even if the temperature (and the pressure if necessary) of the drilling fluid is well controlled to keep the conditions of hydrate-bearing sediments along the hydrate equilibrium boundary. The dissociation of gas hydrate was modelled based on Fick's first law. It was found that the dissociation rate mainly depended on the temperature of the sediments. The locations of dissociation front of CH4 hydrate and CO2 hydrate in wellbore were calculated as a function of time. The impacts of the hydrate dissociation on the wellbore stability and the resistivity well logging in sediments were evaluated.Cited as: Sun, Y., Lu, H., Lu, C., Li, S., Lv, X. Hydrate dissociation induced by gas diffusion from pore water to drilling fluid in a cold wellbore. Advances in Geo-Energy Research, 2018, 2(4): 410-417, doi: 10.26804/ager.2018.04.0

    Characteristics of historical precipitation for winter wheat cropping in the semi-arid and semi-humid area

    Get PDF
    Winter wheat (Triticum aestivum L.) is one of major crops in the area along Huai river, China where it is a semi-arid and semi-humid region with sufficient precipitation for an entire season, but with uneven distribution within various growth stages. The instability of precipitation is an important factor in limiting wheat production potential under climate change. Therefore, it is essential to characterise the precipitation associated with different crop developmental stages. Based on climate data from 1999 to 2020 in six representative meteorological stations, we characterised the historical precipitation relating to seven key growth stages in winter wheat. There is no clear trend of interannual variation of precipitation for wheat season, with an average of precipitation of 414.4 ± 121.2 mm. In terms of the distribution of precipitation grade within a season, light rain was dominant. Continuous rain occurred frequently during the pre-winter seedling and overwintering stages. The critical period of water demand, such as jointing and booting, has less precipitation. The fluctuation range of precipitation in sowing, heading-filling and maturation stages is large, which means that there is flood and drought at times. In conclusion, these findings provide a foundation for instructing winter wheat cropping in confronting with waterlogging and drought risk due to uneven precipitation in ‘Yanhuai’ region, China

    Bionic Optimization Design of Electronic Nose Chamber for Oil and Gas Detection

    Get PDF
    In this paper, a miniaturized bionic electronic nose system is developed in order to solve the problems arising in oil and gas detection for large size and inflexible operation in downhole. The bionic electronic nose chamber is designed by mimicking human nasal turbinate structure, V-groove structure on shark skin surface and flow field distribution around skin surface. The sensitivity of the bionic electronic nose system is investigated through experimentation. Radial Basis Function (RBF) and Support Vector Machines (SVM) of 10-fold cross validation are used to compare the recognition performance of the bionic electronic nose system and common one. The results show that the sensitivity of the bionic electronic nose system with bionic composite chamber (chamber B) is significantly improved compared with that with common chamber (chamber A). The recognition rate of chamber B is 4.27% higher than that of chamber A for the RBF algorithm, while for the SVM algorithm, the recognition rate of chamber B is 5.69% higher than that of chamber A. The three-dimensional simulation model of the chamber is built and verified by Computational Fluid Dynamics (CFD) simulation analysis The number of vortices in chamber B is fewer than that in chamber A. The airflow velocity near the sensors inside chamber B is slower than that inside chamber A. The vortex intensity near the sensors in chamber B is 2. 27 times as much as that in chamber A, which facilitates gas molecules to fully contact with the sensor surface and increases the intensity of sensor signal, and the contact strength and time between odorant molecules and sensor surface. Based on the theoretical investigation and test validation, it is believed that the proposed bionic electronic nose system with bionic composite chamber has potential for oil and gas detection in downhole

    Bufalin Induces Mitochondria-Dependent Apoptosis in Pancreatic and Oral Cancer Cells by Downregulating hTERT Expression via Activation of the JNK/p38 Pathway

    Get PDF
    Bufalin, a digoxin-like active component of the traditional Chinese medicine Chan Su, exhibits potent antitumor activities in many human cancers. Bufalin induces mitochondria-dependent apoptosis in cancer cells, but the detailed molecular mechanisms are largely unknown. hTERT, the catalytic subunit of telomerase, protects against mitochondrial damage by binding to mitochondrial DNA and reducing mitochondrial ROS production. In the present study, we investigated the effects of bufalin on the cell viability, ROS production, DNA damage, and apoptosis of CAPAN-2 human pancreatic and CAL-27 human oral cancer cells. Bufalin reduced CAPAN-2 and CAL-27 cell viability with IC50 values of 159.2 nM and 122.6 nM, respectively. The reduced cell viability was accompanied by increased ROS production, DNA damage, and apoptosis and decreased expression of hTERT. hTERT silencing in CAPAN-2 and CAL-27 cells by siRNA resulted in increased caspase-9/-3 cleavage and DNA damage and decreased cell viability. Collectively, these data suggest that bufalin downregulates hTERT to induce mitochondria-dependent apoptosis in CAPAN-2 and CAL-27 cells. Moreover, bufalin increased the phosphorylation of JNK and p38-MAPK in CAPAN-2 and CAL-27 cells, and blocking the JNK/p38-MAPK pathway using the JNK inhibitor SP600125 or the p38-MAPK inhibitor SB203580 reversed bufalin-induced hTERT downregulation. Thus, the JNK/p38 pathway is involved in bufalin-induced hTERT downregulation and subsequent induction of apoptosis by the mitochondrial pathway
    • …
    corecore