1,008 research outputs found

    Solvable Jordan algebras of compact operators

    Get PDF
    AbstractIt is proved that a Jordan algebra of compact operators which is closed is either an Engel Jordan algebra, or contains a nonzero finite rank operator; Moreover, it is showed that any solvable Jordan algebra of compact operators on an infinite dimensional Banach space is triangularizable

    Mutual regulation between deubiquitinase CYLD and retroviral oncoprotein Tax

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncoprotein Tax, encoded by the human T-cell leukemia virus type 1 (HTLV1), persistently induces NF-κB activation, which contributes to HTLV1-mediated T-cell transformation. Recent studies suggest that the signaling function of Tax requires its ubiquitination, although how the Tax ubiquitination is regulated remains unclear.</p> <p>Results</p> <p>We show here that the deubiquitinase CYLD physically interacts with Tax and negatively regulates the ubiquitination of this viral protein. This function of CYLD is associated with inhibition of Tax-mediated activation of IKK although not that of Tak1. Interestingly, CYLD undergoes constitutive phosphorylation in HTLV1-transformed T cells, a mechanism known to inactivate the catalytic activity of CYLD. Consistently, a phospho-mimetic CYLD mutant fails to inhibit Tax ubiquitination.</p> <p>Conclusion</p> <p>These findings suggest that CYLD negatively regulates the signaling function of Tax through inhibition of Tax ubiquitination. Conversely, induction of CYLD phosphorylation may serve as a mechanism by which HTLV1 overrides the inhibitory function of CYLD, leading to the persistent activation of NF-κB.</p

    Therapeutic effect of teriparatide combined with lowfrequency pulsed electromagnetic field on hip fracture

    Get PDF
    Purpose: To evaluate the therapeutic effect of teriparatide in combination with low-frequency pulsed electromagnetic field in the management of hip fracture.Methods: Patients with hip fracture internal fixation and under conventional postoperative basic adjuvant therapy were compared with those patients who received teriparatide combined with low frequency pulsed electromagnetic field after operation. The content of Bone-Specific AlkalinePhosphatase (BALP), type I Procollagen Carboxy Terminal Propeptide (PICP), serum bone glaprotein (BGP), Ca2+, hip function and degree of bone scab formation were evaluated using Harris score and Fernadez-esteve scoring system. Kaplan-Meier survival curve was plotted to analyze differences in short-term prognosis of different postoperative adjuvant treatment measures.Results: Harris score of the hip joint and the effect of bone formation in the experimental group were higher than that of the control group. The blood levels of BGP, BALP, PICP and serum Ca2+ in the experimental group were higher than that of the control group (p &lt; 0.05). The plotted Kaplan-Meier survival curve indicates that the prognosis of the experimental group was better than that of control group (p &lt; 0.05).Conclusion: The adjuvant therapy of teriparatide combined with low-frequency pulsed electromagnetic field can improve the recovery function and enhance the prognosis of patients who underwent hip fracture surgery. Keywords: Teriparatide; Low frequency pulsed electromagnetic field, hip fractur

    Dream the Impossible: Outlier Imagination with Diffusion Models

    Full text link
    Utilizing auxiliary outlier datasets to regularize the machine learning model has demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the labor intensity in data collection and cleaning, automating outlier data generation has been a long-desired alternative. Despite the appeal, generating photo-realistic outliers in the high dimensional pixel space has been an open challenge for the field. To tackle the problem, this paper proposes a new framework DREAM-OOD, which enables imagining photo-realistic outliers by way of diffusion models, provided with only the in-distribution (ID) data and classes. Specifically, DREAM-OOD learns a text-conditioned latent space based on ID data, and then samples outliers in the low-likelihood region via the latent, which can be decoded into images by the diffusion model. Different from prior works, DREAM-OOD enables visualizing and understanding the imagined outliers, directly in the pixel space. We conduct comprehensive quantitative and qualitative studies to understand the efficacy of DREAM-OOD, and show that training with the samples generated by DREAM-OOD can benefit OOD detection performance. Code is publicly available at https://github.com/deeplearning-wisc/dream-ood.Comment: NeurIPS 202

    Industrial Anomaly Detection with Domain Shift: A Real-world Dataset and Masked Multi-scale Reconstruction

    Full text link
    Industrial anomaly detection (IAD) is crucial for automating industrial quality inspection. The diversity of the datasets is the foundation for developing comprehensive IAD algorithms. Existing IAD datasets focus on the diversity of data categories, overlooking the diversity of domains within the same data category. In this paper, to bridge this gap, we propose the Aero-engine Blade Anomaly Detection (AeBAD) dataset, consisting of two sub-datasets: the single-blade dataset and the video anomaly detection dataset of blades. Compared to existing datasets, AeBAD has the following two characteristics: 1.) The target samples are not aligned and at different scales. 2.) There is a domain shift between the distribution of normal samples in the test set and the training set, where the domain shifts are mainly caused by the changes in illumination and view. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods exhibit limitations when the domain of normal samples in the test set undergoes a shift. To address this issue, we propose a novel method called masked multi-scale reconstruction (MMR), which enhances the model's capacity to deduce causality among patches in normal samples by a masked reconstruction task. MMR achieves superior performance compared to SOTA methods on the AeBAD dataset. Furthermore, MMR achieves competitive performance with SOTA methods to detect the anomalies of different types on the MVTec AD dataset. Code and dataset are available at https://github.com/zhangzilongc/MMR.Comment: submit to Computers in Industr

    DBMLoc: a Database of proteins with multiple subcellular localizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subcellular localization information is one of the key features to protein function research. Locating to a specific subcellular compartment is essential for a protein to function efficiently. Proteins which have multiple localizations will provide more clues. This kind of proteins may take a high proportion, even more than 35%.</p> <p>Description</p> <p>We have developed a database of proteins with multiple subcellular localizations, designated DBMLoc. The initial release contains 10470 multiple subcellular localization-annotated entries. Annotations are collected from primary protein databases, specific subcellular localization databases and literature texts. All the protein entries are cross-referenced to GO annotations and SwissProt. Protein-protein interactions are also annotated. They are classified into 12 large subcellular localization categories based on GO hierarchical architecture and original annotations. Download, search and sequence BLAST tools are also available on the website.</p> <p>Conclusion</p> <p>DBMLoc is a protein database which collects proteins with more than one subcellular localization annotation. It is freely accessed at <url>http://www.bioinfo.tsinghua.edu.cn/DBMLoc/index.htm</url>.</p

    Ultrafast Relaxation Dynamics of Photoexcited Dirac Fermion in The Three Dimensional Dirac Semimetal Cadmium Arsenide

    Full text link
    Three dimensional (3D) Dirac semimetals which can be seen as 3D analogues of graphene have attracted enormous interests in research recently. In order to apply these ultrahigh-mobility materials in future electronic/optoelectronic devices, it is crucial to understand the relaxation dynamics of photoexcited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of the photoexcited carrier dynamics in cadmium arsenide (Cd3As2), which is one of the most stable Dirac semimetals that have been confirmed experimentally. By using low energy probe photon of 0.3 eV, we probed the dynamics of the photoexcited carriers that are Dirac-Fermi-like approaching the Dirac point. We systematically studied the transient reflection on bulk and nanoplate samples that have different doping intensities by tuning the probe wavelength, pump power and lattice temperature, and find that the dynamical evolution of carrier distributions can be retrieved qualitatively by using a two-temperature model. This result is very similar to that of graphene, but the carrier cooling through the optical phonon couplings is slower and lasts over larger electron temperature range because the optical phonon energies in Cd3As2 are much lower than those in graphene
    corecore