
Linear Algebra and its Applications 432 (2010) 1337–1347

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

Solvable Jordan algebras of compact operators�

Shanli Sun, Xuefeng Ma∗

Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, School of Mathematics and Systems

Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China

A R T I C L E I N F O A B S T R A C T

Article history:

Received 10 August 2009

Accepted 29 October 2009

Available online 2 December 2009

Submitted by P. Semrl

AMS classification:

17C65

46H70

17B30

Keywords:

Jordan algebra

Invariant subspace

Engel ideal

Solvable

It is proved that a Jordan algebra of compact operators which is

closed is either an Engel Jordan algebra, or contains a nonzero finite

rank operator;Moreover, it is showed that any solvable Jordan alge-

bra of compact operators on an infinite dimensional Banach space

is triangularizable.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Invariant Subspace Problem that the existence of a nontrivial closed subspace invariant under

an operator or a set of operators is one of the famous open questions in the operator theory. One of

the classical results on the subject was due to Lomonosov [3] in 1973. He proved that every irreducible

algebra of compact operators on aBanach spaceX is dense in the algebraB(X )of all boundedoperators

on X , with respect to the weak operator topology. Wojtyński [10] extends the results of Lomonosov to

Lie algebras of compact operators, who established the following result that a Lie algebra of compact

operatorswhich is closed is either an Engel Lie algebra, or contains a nonzerofinite rank operator. Some

�
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more general results, such as semigroups of compact operators and semigroups of Volterra operators,

were given in [4,9], respectively.

It could be said that one of the aims of Invariant Subspace Theory is to establish triangularizability

results. The classical examples are the famous Engel and Lie theorems which state that nilpotent and,

respectively, solvable Lie algebras of operators on finite-dimensional spaces are triangularizable. They

were extended to compact operators in [7] for Engle Lie algebra and in [6] for solvable Lie algebras.

Historically, the theoretical development of Jordan algebras has closely corresponded to the theoretical

developmentof Liealgebras, a factwhichhasbeenutilized toverifymanyresults inbothareas.Recently,

Kennedy et al. [2] showed an analog of Engel’s theorem for Jordan algebras of operators which says

that a Jordan algebra of Volterra operators is triangularizable.

It is natural and very interesting to ask whether Wojtyński’s result extends to a Jordan algebra of

compact operators on a Banach space, and whether an analogous result of Lie’s theorem for Jordan

algebras of compact operators on a Banach space is valid.Wewill give affirmative answers to the above

two questions in this paper. The main results of this paper are the following: (1) a Jordan algebra of

compact operators which is closed is either an Engel Jordan algebra, or contains a nonzero finite rank

operator; (2) any solvable Jordan algebra of compact operators is triangularizable.

2. Preliminaries

We now introduce some definitions and notations. Let X be a complex Banach space, B(X ),K(X )
andF(X ) the sets of all bounded linear operators on X , all compact operators, all finite rank operators

correspondingly. For A ∈ B(X ), by σ(A) we denote the spectrum of A. A is said to be quasinilpotent

if σ(A) = {0} or equivalently if limn→∞(‖An‖) 1
n = 0. Note that an operator is called Volterra if it is

compact and quasinilpotent; a set of operators is Volterra if its elements are Volterra.

A Lie algebra L of operators is a subspace of B(X ) which is closed under the Lie product [A, B] =
AB − BA, for A, B ∈ L. An element A ∈ L induces a linear transformation adA on B(X ) defined by

adA(B) = AB − BA, for B ∈ B(X ). Note thatL is invariant under adA; by adLAwedenote the restriction

of adA to L. The operator adLA is called the adjoint representation of A. Recall that if L is a normed Lie

subalgebra, then L is an Engel Lie algebra if all operators adLA : B �−→ [A, B] on L are quasinilpotent

for any A ∈ L.
A Jordan algebra J of operators is a subspace of B(X ) if it is closed under the Jordan product

A ◦ B = AB + BA, for A, B ∈ J . An element A ∈ J induces the multiplication operator TA on B(X )
defined by TA(B) = A ◦ B, for B ∈ B(X ). Note that J is invariant under TA; by TA|J we denote the

restriction of TA toJ . LetJ is a normed Lie subalgebra, thenJ is an Engel Jordan algebra if all operators

TA|J : B �−→ A ◦ B on J are quasinilpotent for any A ∈ J .

The Jordan triple product is defined by

{ABC} = ABC + CBA, (1)

for any A, B, C ∈ B(X ). It is easy to check that the formula

2{ABC} = (A ◦ B) ◦ C + (B ◦ C) ◦ A − (A ◦ C) ◦ B (2)

holds. Especially, we have that

{ABA} = A ◦ (A ◦ B) − A2 ◦ B. (3)

Similarly, for any A1, . . . , An ∈ B(X ), we will write

{A1 · · · An} = A1 · · · An + An · · · A1. (4)

It is well known that, if n� 4, this cannot be expressed in terms of the Jordan product, even there exist

Jordan subalgebras of B(X ) which are not closed under the above multilinear product (4). Further, it

is easy to see that

[A, [B, C]] = (A ◦ B) ◦ C − (A ◦ C) ◦ B. (5)
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As we all know, for A, B, C, D ∈ J , one has the following identities:

A ◦ ((B ◦ C) ◦ D) + B ◦ ((C ◦ A) ◦ D) + C ◦ ((A ◦ B) ◦ D)

= (B ◦ C) ◦ (A ◦ D) + (C ◦ A) ◦ (B ◦ D) + (A ◦ B) ◦ (C ◦ D), (6)

D ◦ ((B ◦ C) ◦ A) + B ◦ ((C ◦ D) ◦ A) + C ◦ ((D ◦ B) ◦ A)

= (B ◦ C) ◦ (A ◦ D) + (C ◦ A) ◦ (B ◦ D) + (A ◦ B) ◦ (C ◦ D), (7)

TATB◦C + TBTC◦A + TCTA◦B = TA◦(B◦C) + TBTATC + TCTATB, (8)

2TATBTC = TC◦ATB + TA◦BTC + TB◦CTA − T(C◦A)◦B + [TB, TC]TA + TB[TA, TC] + [TA, TB]TC . (9)

Letting δA,B = [TA, TB] for A, B ∈ J , it is well known that δA,B is a Jordan derivation of Jordan algebra

J , i.e.

δA,B(C ◦ D) = (δA,BC) ◦ D + C ◦ (δA,BD) (10)

for any C, D ∈ J . Recall that a Jordan algebra J is called solvable if there exists a natural number n

such that J (n) = {0}, where the chains J (n) is defined by the rules

J (0) = J ,J (k+1) = J (k) ◦ J (k)

for k = 0, 1, · · ·. The smallest n such that J (n) = {0} is called the solvability length of J . Clearly, the

descending chains

J (0) ⊇ J (1) ⊇ J (2) ⊇ · · · ⊇ J (n) ⊇ · · · .
Note that for algebras in which its square is its an ideal, and for Lie algebras, each solvable power J (n)

is again its an ideal. In the case of Jordan algebras, this is not necessarily so, i.e. it is not necessarily

true that J (n) ◦ J � J (n) for any n ∈ N .

For A ∈ B(X ) and λ ∈ C, where C denotes the complex field, let

ελ(A) = {x ∈ X : limn→∞‖(A − λ)nx‖ = 0}.
The set ελ(A) is called an elementary spectral manifold. It is known [10] that ελ(A) is closed and

nonzero if λ is an isolated point in the spectrum of A, and that A is quasinilpotent if ε0(A) = X . It is

clear that ελ(A) /= {0} implies that λ ∈ σ(A) (Note that λ ∈ σ(A) does not imply that ελ(A) /= {0}.)
A closed subspace Y ⊆ X is invariant under a operator T ∈ B(X ) if TY ⊆ Y . A set M of bounded

linear operators on a complex Banach space X is said to be reducible if there is a non-trivial subspace

invariant under all the operators in the set. The set M is said to be triangularizable if there exists a

maximal subspace chain consisting of closed subspaces which are invariant under all the operators in

the set M.

For Lie algebras L and M, the designation M � J means that M is an ideal of L, i.e. [L,M] ⊆ M.

Recall that if J is a Jordan algebra, then a Jordan ideal K is a subspace of J such that J ◦ K ⊆ K. For

a Jordan algebra of operators J ,A denotes the unital enveloping associative algebra generated by J ,

and if a set M ⊆ J , then A(M) denotes the ideal of A generated by M,J (M) the Jordan ideal of J
generated by M.

3. The main results

We are now ready for themain results of this section. Throughout, we use the notations introduced

above. To prove the main results of this section, we will need the following technical lemma.

Lemma 3.1. For any n ∈ N and A, B ∈ B(X ), we have that

(1) TA(BA) = (TAB)A.

(2) A ◦ (AnB) = ∑n
k=0(−1)k

(
n
k

)
((TA)

n+1−k(B))Ak.
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Proof. (1) TA(BA) = A ◦ (BA) = (A ◦ B)A = (TAB)A.
(2) We proceed by induction on n. Obviously,

A ◦ (AB) = A2B + ABA = A(A ◦ B) = A ◦ (A ◦ B) − (A ◦ B)A.

If n > 2, for k � n, by (1), applying the equations AB = TAB − BA and(
n

k − 1

)
+
(
n

k

)
=
(
n + 1

k

)
,

we have that

A ◦ (An+1B) = A ◦ (An(AB)) =
n∑

k=0

(−1)k
(
n

k

)
((TA)

n+1−k(AB))Ak

=
n∑

k=0

(−1)k
(
n

k

)
((TA)

n+1−k(TAB − BA))Ak

= (TA)
n+1(TAB − BA) + (−1)n((TA)(TAB − BA))An

+
n−1∑
k=1

(−1)k
(
n

k

)
((TA)

n+1−k(TAB − BA))Ak

= (TA)
n+1(TAB − BA) + (−1)n((TA)(TAB − BA))An

=
n−1∑
k=1

(−1)k
(
n

k

)
((TA)

n+1−k(TAB))A
k +

n−1∑
k=1

(−1)k+1

(
n

k

)
((TA)

n+1−k(B))Ak+1

= (TA)
n+2(B) + (−1)n+1(TA(BA))A

n +
n∑

k=1

(−1)k
(
n

k

)
((TA)

n+2−k(B))Ak

+
n∑

k=1

(−1)k
(

n

k − 1

)
((TA)

n+2−k(B))Ak

=
n+1∑
k=0

(−1)k
(
n + 1

k

)
((TA)

n+2−k(B))Ak.

The conclusions follows. �

Lemma 3.2. Let J be a closed Jordan algebra of compact operator. For any A ∈ J , we have that

σ(TA|J ) ⊆ σ(A) + σ(A).

Moreover, σ(TA|J ) is countable compact.

Proof. For any A ∈ J , note that TA : K(X ) → K(X ) defined by

TA(B) = AB + BA for any B ∈ K(X ).

By Rosenblum’s theorem, we have that σ(TA) ⊆ σ(A) + σ(A). Hence, σ(TA) is countable. Recall that
TA|J is the restriction of TA to its invariant subspace J . So we have that σ(TA|J ) ⊆ σ(TA). The
conclusion follows. �

Lemma 3.3. Let A ∈ K(X ) and B ∈ B(X ). If there exists 0 /= λ ∈ σ(TA) such that ‖(TA − λ)nB‖ 1
n → 0

for n → ∞, then B ∈ F(X ).

Proof. Recall that 0 is the only accumulation point of σ(A) and σ(TA) ⊆ σ(A) + σ(A). So we can

write λ = λ1 + λ2, where λ1, λ2 ∈ σ(A). Let us set

σ1 = {δ ∈ σ(A) : δ /= 0 and η ∈ σ(A) such that λ = δ + η}, and σ2 = σ(A) \ σ1.
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Here, we claim below that σ1 is a finite subset of σ(A). Suppose, to the contrary, σ1 is not a finite

subset of σ(A). So if {δn} ⊆ σ1 and λ = δn + ηn, then there is {δnk} ⊆ {δn} and {ηnk} ⊆ {ηn} such

that δnk → δ0 and ηnk → η0 for k → ∞, which contradicts the hypothesis λ /= 0. Hence we get that

σ1 and σ2 are both closed subsets of σ(A). By the Riesz decomposition theorem, then there exists an

unique direct sum decomposition X = M1

⊕
M2 such that, for i = 1, 2,Mi is invariant under A, and

σ(A|M1
) = σ1 and σ(A|M2

) = σ2. Let Pi, i = 1, 2, be the projection onto Mi. Obviously, we have that

B(X ) = P1B(X )P1 + P1B(X )P2 + P2B(X )P1 + P2B(X )P2.

Since Mi are invariant under A for i = 1, 2, one easily see that

P1AP1 = A|M1
, P1AP2 = P2AP1 = 0, P2AP2 = A|M2

,

and the spaces PiB(X )Pj are invariant under TA for i, j = 1, 2. In particular, TA restricted to P2B(X )P2 is
equal to TA|M2

. Recall that σ(TA|M2
) ⊆ σ(A|M2

) + σ(A|M2
) = σ2 + σ2 and λ ∈ σ1, which implies

that λ /∈ σ(TA|M2
). Clearly, there is a constant M such that

‖(TA|M2
− λ)nP2BP2‖ 1

n = ‖P2((TA − λ)nB)P2‖ 1
n

� M‖(TA − λ)nB‖ 1
n → 0

for n → ∞. Since λ /∈ σ(A|M2
) = σ(P2AP2), then we get that P2BP2 = 0. So we have that

B = P1BP1 + P1BP2 + P2BP1.

Note that since σ1 is a finite subset of σ(A) not containing 0 and A is compact, the space M1 is finite

dimensional and hence P1 ∈ F(X ). Thus B is a finite rank operator. �

We now state some equalities concerning Jordan operator algebras. For any A, B, C ∈ J , from the

equation 2ABA = A ◦ (A ◦ B) − A2 ◦ B, we get that ABA, ABCBA, (A ◦ B)C(A ◦ B) ∈ J . Further, from

[A, B]2 = (ABA) ◦ B − AB2A − BA2Band [A, B]C[A, B] = (A ◦ B)C(A ◦ B) − 2(ABCBA + BACAB),wesee

that

[A, B]2, [A, B]C[A, B] ∈ J . (11)

Letting A1, A2, A3, A4 ∈ J , it is easy to check that A1 ◦ {A2A3A4} = {A1A2A3A4} + {A2A3A4A1}. Then
obviously yields

{A1A2A3A4} = −{A2A3A4A1} + J ◦ J . (12)

Note that

(A1 ◦ A2) ◦ (A3 ◦ A4) = {A1A2A3A4} + {A2A1A3A4} + {A3A4A2A1} + {A3A4A1A2}.
By applying the cyclic permutation twice, we get that {A3A4A2A1} ∈ {A2A1A3A4} + J ◦ J and

{A3A4A1A2} ∈ {A1A2A3A4} + J ◦ J . Hence we have that

{A1A2A3A4} = −{A2A1A3A4} + J ◦ J . (13)

From (12) and (13), it is easy to check that

{A1A2A3A4} ∈ (−1)σ {Aσ(1)Aσ(2)Aσ(3)Aσ(4)} + J ◦ J , (14)

where σ is a permutation of {1, 2, 3, 4} and (−1)σ its sign. In what follows, we shall frequently use

these identities. Here, [[J ,J ],J (n)] denotes the set {[[A, B], C] : A, B ∈ J , C ∈ J n}, and {J J (n)J (n)}
denotes the set {{ABC} : A ∈ J , B, C ∈ J n}.
Lemma 3.4. For any n ∈ N , we have that

(a) [[J ,J ],J (n)] ⊆ J (n).

(b) J (n+1) ◦ J ⊆ J (n).
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(c) {J J (n)J (n)} ⊆ J (n).

(d) ((J (n) ◦ J ) ◦ J ) ◦ J (n) ⊆ J (n).

(e) A((J (n))5) ⊆ A(J (n) ◦ J (n)).

Proof. (a) We carry out the proof by induction on n. It is clear that δA,BC = [[A, B], C] for A, B, C ∈ J .

Suppose that δJ ,J (J n−1) ⊆ J n−1. By (10), we have that

δJ ,J (J n) = δJ ,J (J n−1 ◦ J n−1) = δJ ,J (J n−1) ◦ J n−1 + J n−1 ◦ δJ ,J (J n−1) ⊆ J n.

The conclusion follows.

(b) Let us assume that J (k) ◦ J ⊆ J (k−1) for some natural number k. From (8) and the fact that

J (k) ⊆ J (k−1), we get that

J (k+1) ◦ J = (J (k) ◦ J (k)) ◦ J = (J (k) ◦ (J (k−1) ◦ J (k−1))) ◦ J

⊆ J (k) ◦ ((J (k−1) ◦ J (k−1)) ◦ J ) + J (k−1) ◦ ((J (k−1) ◦ J (k)) ◦ J )

+ J (k−1) ◦ (J (k) ◦ (J (k−1) ◦ J ))

⊆ J (k−1) ◦ (J (k) ◦ J ) ⊆ J (k).

The conclusion follows.

(c) From (a), we have that

(J ◦ J (n)) ◦ J (n) ⊆ J (n−1) ◦ J (n) ⊆ J (n).

From (2), we get that

{J J (n)J (n)} ⊆ (J (n) ◦ J (n)) ◦ J + [J , [J (n),J (n)]].
By (a) and (b), the conclusion follows.

(d) Now suppose that ((J (k) ◦ J ) ◦ J ) ◦ J (k) ⊆ J (k) for some natural number k. Then by (6), we

obtain that

((J (k+1) ◦ J ) ◦ J ) ◦ J (k+1) = (((J (k) ◦ J (k)) ◦ J ) ◦ J ) ◦ J (k+1)

⊆ (((J (k) ◦ J ) ◦ J ) ◦ J (k)) ◦ J (k+1)

+ ((J (k) ◦ J (k)) ◦ (J ◦ J )) ◦ J (k+1)

+ ((J (k) ◦ J ) ◦ (J (k) ◦ J )) ◦ J (k+1)

from which and (a), we get that

((J (k+1) ◦ J ) ◦ J ) ◦ J (k+1) ⊆ J (k+1).

The conclusion follows.

(e) Let us assume that A, B, C, D, E ∈ J (n). From the equation

ABCD + BCDA = (A ◦ B)CD + BC(A ◦ D) − B(A ◦ C)D,

we get that

ABCD + BCDA, EABC + ABCE, BCDE + CDEB, ACDE + CDEA ∈ A(J (n) ◦ J (n)).

It can be easily seen that

4ABCDE − {ABCD} ◦ E = (ABCD + BCDA)E − {BCD}AE + ABC(D ◦ E) − (EABC + ABCE)D

+ A(BCDE + CDEB) − (ACDE + CDEA)B + {CDE}AB − EDC(A ◦ B),

which implies that ABCDE − 1
4
{ABCD} ◦ E ∈ A(J (n) ◦ J (n)). Since J (n) = J (n−1) ◦ J (n−1), for any

T ∈ J (n), we can write that T = UV + VU, where U, V ∈ J (n−1). Note that
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UV + VU = (U + V)2 − U2 − V2.

It suffices to prove that {P2Q2R2S2} ∈ J (n) + A(J (n) ◦ J (n))with P, Q , R, S ∈ J (n−1). Here, we claim

that

{P2Q2R2S2} − {(TSTRTQP
2)QRS} ∈ J (n)

for any P, Q , R, S ∈ J (n−1). Indeed, since Q2P2 = Q(Q ◦ P2) − QP2Q , we have that

{Q2P2R2S2} = {Q(TQP
2)R2S2} − {(QP2Q)R2S2},

which implies that {Q2P2R2S2} ∈ {Q(TQP
2)R2S2} + J (n). By (14), one easily checks that

{P2Q2R2S2} ∈ −{Q2P2R2S2} + J (n)

∈ {(QP2Q)R2S2} + {(R(Q ◦ P2)R)QS2} + {(S(R ◦ (Q ◦ P2))S)QR}
+ {(TSTRTQP

2)QRS} + J (n).

This gives that {P2Q2R2S2} − {(TSTRTQP
2)QRS} ∈ J (n), as claimed.

Further, it follows from (9) that

2TSTRTQ = TQ◦STR + TS◦RTQ + TR◦QTS − T(Q◦S)◦R
+ [TR, TQ ]TS + TR[TS, TQ ] + [TS, TR]TQ . (15)

Note that TQ◦STRP
2 = (Q ◦ S) ◦ (R ◦ P2) ∈ (J (n) ◦ J (n)), which implies that {(TQ◦STRP

2)QRS},
{(TS◦RTQP

2)QRS}, {(TR◦QTSP
2)QRS}, {(TR◦(Q◦S)P2)QRS} ∈ A(J (n) ◦ J (n)). From (15), we get that

{(TSTRTQP
2)QRS} ∈ {([TR, TQ ]TSP

2)QRS} + {(TR[TS, TQ ]P2)QRS}
+ {([TS, TR]TQP

2)QRS} + J (n) + A(J (n) ◦ J (n)).

Since QR = 1
2
(R ◦ Q) − 1

2
[R, Q ] and [TR, TQ ]TSP

2 = [[R, Q ], S ◦ P2], by (14), then we have that

{([TR, TQ ]TSP
2)QRS} = 1

2
{([[R, Q ], S ◦ P2])(R ◦ Q)S} − 1

2
{([[R, Q ], S ◦ P2])[R, Q ]S}

= 1

2
{([[R, Q ], S ◦ P2])(R ◦ Q)S} − 1

2
{([R, Q ](S ◦ P2)[R, Q ])S}

+ 1

2
{(S ◦ P2)[R, Q ]2S}

= 1

2
{([[R, Q ], S ◦ P2])(R ◦ Q)S} − 1

2
{([R, Q ](S ◦ P2)[R, Q ])S}

− 1

2
{[R, Q ]2(S ◦ P2)S} + J (n).

By (5) and (11), we get that {([TR, TQ ]TSP
2)QRS} ∈ J (n). Similarly, we have that

{([TS, TR]TQP
2)QRS}, {([TS, TR]P2)QRS} ∈ J (n).

On the other hand, by (14), we get that

{(TR[TS , TQ ]P2)QRS} = {(R ◦ [[S, Q ], P2])QRS}
= {R(R ◦ [[S, Q ], P2])QS} + J (n)

= R ◦ {R[[S, Q ], P2]QS} + {(R[[S, Q ], P2]R)QS} − {R{[[S, Q ], P2]QS}R} + J (n)

= R ◦ {R([TS , TQ ]P2)QS} + {(R[[S, Q ], P2]R)QS} − {R{[[S, Q ], P2]QS}R} + J (n)
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from which and (14) we obtain that {(TR[TS, TQ ]P2)QRS} ∈ J (n). Therefore, we have obviously that

{(TSTRTQP
2)QRS} ∈ A(J (n) ◦ J (n)) + J (n).

The conclusion follows. �

Lemma 3.5. For any n, m ∈ N , we have that

(i) (J (J (n)))2m ⊆ (A(J (n)))2m ⊆ A((J (n))m).

(ii) (J (J ◦ J ))10
n ⊆ (A(J ◦ J ))10

n ⊆ A(J (n)).

Proof. (i) We proceed by induction on n. Suppose that (A(J (n)))2m ⊆ A((J (n))m) for some natural

number m. Recall that A(J (n)) = J (n) + AJ (n) + J (n)A + AJ (n)A and A = J + J A = J + AJ .

Then we get that

(A(J (n)))2(m+1) ⊆ A((J (n))m)(J (n) + AJ (n) + J (n)A + AJ (n)A)2.

Note thatA((J (n))m+1) = (J (n))m+1 + A(J (n))m+1 + (J (n))m+1A + A(J (n))m+1A. Thestatement

will be proved if we show that AJ (n)J (n),AJ (n)AJ (n) ⊆ J (n) + J (n)A. By Lemma 3.4 (c), we obtain

that J J (n)J (n) ⊆ J (n) + J (n)A.

For any A, B ∈ J and C ∈ J (n), it is easy to check that

ABC = 1

2
((A ◦ B)C + 1

2
[[A, B], C] + 1

2
C[A, B].

Hence we get that

J J J (n) ⊆ J J (n) + [[J ,J ],J (n)] + J (n)J J .

By Lemma 3.4(a), we have that [[J ,J ],J (n)] ⊆ J (n). By induction, we have that

AJ (n) ⊆ J J (n) + J J (n)A + J (n) + J (n)A.

Then we get that

AJ (n)J (n) ⊆ J J (n)J (n) + J J (n)AJ (n) + J (n)J (n) + J (n)A

⊆ J J (n)J (n) + J J (n)(J J (n) + J J (n)A + J (n) + J (n)A) + J (n)A

⊆ J J (n)J J (n) + J J (n)J J (n)A + J (n) + J (n)A.

Similarly, we have that

J J (n)AJ J (n),J J (n)AJ (n)A,J J (n)AJ (n),J J (n)AJ (n)

⊆ J J (n)J J (n) + J J (n)J J (n)A + J (n) + J (n)A.

Further, it is easy to verify that

AJ (n)AJ (n) ⊆ J J (n)J J (n) + J J (n)J J (n)A + J J (n)J (n) + J J (n)J (n)A

+ J J (n)AJ J (n) + J J (n)AJ J (n)A + J J (n)AJ (n) + J J (n)AJ J (n)

⊆ J J (n)J J (n) + J J (n)J J (n)A + J (n) + J (n)A.

On the other hand, note that J J (n) ⊆ J ◦ J (n) + J (n)J . Then we have that

J J (n)J J (n) ⊆ {(J ◦ J (n))J J (n)} + J (n)A.

By (2) and (5), it is easily seen that

{(J ◦ J (n))J J (n)} = {J (n)J (J ◦ J (n))} ⊆ ((J ◦ J (n)) ◦ J ) ◦ J (n) + [J (n), [J ,J (n) ◦ J ]].
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By Lemma 3.4(d) and (a), the conclusion follows.

(ii) Let us suppose that (A(J ◦ J ))10
k ⊆ A(J (k)). Using Lemma 3.4 (e) and (i), we have that

(A(J ◦ J ))10
k+1 ⊆ (A(J (k)))10 ⊆ A((J (k))5) ⊆ A(J (k) ◦ J (k)) = A(J (k+1)).

The conclusion follows. �

Proposition 3.1. If A ∈ K(X ), then for nonzero λ ∈ C, the set ελ(TA) consists of finite rank operators.

Proof. This is a consequence of Lemma 3.3. �

Proposition 3.2. Let A, B ∈ B(X ) and λ ∈ C. If ‖T n
A−λ(B)‖

1
n → 0 for n → ∞, then ελ(A) is invariant

under B.

Proof. Let y be in ελ(A). By Lemma 3.1, we have that

(A − λ) ◦ (A − λ)nB =
n∑

k=0

(−1)k
(
n

k

)
(T n+1−k

A−λ (B))(A − λ)k.

By induction on n, one easily checks that

(A − λ)n+1B =
n∑

i=0

(−1)i((A − λ) ◦ ((A − λ)n−iB))(A − λ)i + (−1)n+1B(A − λ)n+1

from which we get that

(A − λ)n+1B =
n∑

i=0

(−1)i
n−i∑
k=0

(−1)k
(
n − i

k

)
(T n+1−k−i

A−λ (B))(A − λ)k+i + (−1)n+1B(A − λ)n+1.

Let us write aj = 2j‖T j
A−λ(B)‖, bj = 2j‖(A − λ)jy‖, cn = maxj � nan−j+1bj . Recall that a

1
n
n → 0, b

1
n
n →

0 for n → ∞. It is easy to prove that c
1
n
n → 0(n → ∞). Hence we have that

‖(A − λ)n+1By‖ 1
n �

⎛
⎝ n∑

i=0

n−i∑
k=0

(
n − i

k

)
‖(T n+1−k−i

A−λ (B))(A − λ)k+iy‖
⎞
⎠

1
n

+ ‖B‖‖(A − λ)n+1y‖ 1
n

�

⎛
⎝ n∑

i=0

(
1

2
)i+1

n−i∑
k=0

(
n − i

k

)
an+1−k−ibk+i

(
1

2

)n−i−k (1

2

)k
⎞
⎠

1
n

+ ‖B‖‖(A − λ)n+1y‖ 1
n

� c
1
n
n + ‖B‖‖(A − λ)n+1y‖ 1

n .

So we have that ‖(A − λ)n+1By‖ 1
n → 0 for n → ∞, which means that By ∈ ελ(A). �

Theorem 3.1. Let J be a closed Jordan subalgebra of compact operator. Then J is either an Engel Jordan

algebra, or contains a nonzero finite rank operator.

Proof. If J is not an Engel Jordan algebra, then there is an A ∈ J such that σ(TA|J ) /= {0}. Since
σ(TA|J ) is countable compact by Lemma 3.2, it contains a nonzero isolated point λ. Putting σ1 =
{λ} and σ2 = σ(TA|J ) \ {λ}, and repeating the proof of the above Lemma 3.3, we get that J =
J1

⊕
J2 as the decomposition of J , where Ji is invariant under TA|J for i = 1, 2, σ(TA|J1

) = σ1 and
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σ(TA|J2
) = σ2. Since σ1 = {λ} = σ(TA|J1

), it is easy to check that J1 = ελ(TA|J1
). Particularly, we

have that ελ(TA|J1
) /= {0}. So there exists a 0 /= C ∈ J such that ‖(TA − λ)nC‖ 1

n → 0 for n → ∞.

By Lemma 3.3, we have that C is a finite rank operator, which completes the proof. �

Recall that a subspace N of B(X ) is a Lie triple system if it is closed under the Lie triple product

[A, [B, C]] for all A, B, C ∈ N . Given a subspaceN ofB(X ), we denote byL(N ) the Lie algebra generated
byN . IfN is a Lie triple system then it is clear thatL(N ) = N + [N ,N ], where [N ,N ] = span{[A, B] :
A, B ∈ N }. The equality [A, [B, C]] = (A ◦ B) ◦ C − (A ◦ C) ◦ B shows that every Jordan algebra is also

a Lie triple system. For a Jordan algebra J of operators, the Lie algebra L(J ) generated by J coincides

with J + [J ,J ]. Further, if I is a Jordan ideal of J , putting L(J , I) = I + [I,J ], applying the Jacobi

identity, it is easy to check that L(J , I) is a Lie algebra, L(I) is a Lie ideal of L(J , I), and L(J , I) is a
Lie ideal of L(J ), where L(I) and L(J ) are Lie algebras generated by I and J , respectively. Regarding

the existence of invariant subspaces for Lie algebras of compact operators, a number of reducibility

criteria are given (see [2,6–8]). We require the following known results.

Lemma 3.6 (See [2, Theorem 2.5]). Let L be a Lie algebra of compact operators. The following conditions

are equivalent.

(i) L is triangularizable.
(ii) [L,L] is an Engel Lie algebra.

Lemma3.7 (See [2, Remark 9.6] and [2, Lemma10.1]). LetM ⊆ B(X ) be a Lie triple systemandL(M) =
M + [M,M] a Lie algebra generated by M. If M is Volterra, then L is triangularizable.

Lemma 3.8 (See [8, Theorem 1.1]). Let L be a Lie algebra of compact operators. If L has a nonzero Engel

ideal, then L is reducible.
Let L ⊆ B(X ) be an operator Lie algebra. The normalizer Nor(L) of L in B(X ) is defined as Nor(L) :=

{S ∈ B(X ) : [S,L] ⊆ L}, if M is a Lie ideal of L, it is clear that L ⊆ Nor(M). A Lie ideal M of L is inner-

characteristic if M is invariant for all adS with S ∈ Nor(L), i.e. Nor(L) ⊆ Nor(M). The following lemma

is useful.

Lemma 3.9 (See [8, Theorem 5.20]). Let L be a Lie algebra of compact operators. Then L has the largest

Engel ideal E(L) such that E(L) is closed in L and is inner-characteristic.

Theorem 3.2. Any solvable Jordan algebra J of compact operators is triangularizable.

Proof. Let us assume that J (n) = {0} and J (n−1) /= {0} for some positive integer n. So it follows

immediately that A(J (n)) = {0}. By Lemma 3.5, then we have obviously that

(J (J ◦ J ))10
n ⊆ (A(J ◦ J ))10

n ⊆ A(J (n)),

which implies that J (J ◦ J ) is nilpotent. Now let us put that

L(J ,J (J ◦ J )) = J (J ◦ J ) + [J (J ◦ J ),J ].
Further, it is easy tocheck thatL(J ,J (J ◦ J )) is aLiealgebra,L(J (J ◦ J )) is aLie idealofL(J ,J (J ◦
J )) and L(J ,J (J ◦ J )) is a Lie ideal of L(J ), where L(J (J ◦ J )) and L(J ) are Lie algebras gener-

atedbyJ (J ◦ J )andJ , respectively.Moreover, by Lemma3.9, let us suppose thatE(L(J ,J (J ◦ J )))
is the largest Engel ideal in L(J ,J (J ◦ J )).

Recall that J (J ◦ J ) is nilpotent and J (J ◦ J ) generates L(J (J ◦ J )). By Lemmas 3.6 and 3.7,

we have that L(J (J ◦ J )) is triangularizable and therefore [L(J (J ◦ J )),L(J (J ◦ J ))] is an Engel

Lie algebra.
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Note that L(J (J ◦ J )) is a Lie ideal of L(J ,J (J ◦ J )). By the Jacobi identity, it is easy to see that

[L(J (J ◦ J )),L(J (J ◦ J ))] is also a Lie ideal of L(J ,J (J ◦ J )).

(i) If [L(J (J ◦ J )),L(J (J ◦ J ))] /= {0}, then it is a nonzero Engel Lie ideal of L(J ,J (J ◦
J )).

(ii) If [L(J (J ◦ J )),L(J (J ◦ J ))] = {0}, then L(J (J ◦ J )) is commutative, and hence

L(J (J ◦ J )) is a nonzero Engel Lie ideal of L(J ,J (J ◦ J )).

Therefore, L(J ,J (J ◦ J )) has a nonzero Engel Lie ideal. Recall that E(L(J ,J (J ◦ J ))) is the

largest Engel Lie ideal of L(J ,J (J ◦ J )). That means that E(L(J ,J (J ◦ J ))) is nonzero. Further,

since L(J ,J (J ◦ J )) is a Lie ideal of L(J ), then we have that L(J ) ⊆ Nor(L(J ,J (J ◦ J ))). It
follows directly from Lemma 3.9 that

adL(J )(E(L(J ,J (J ◦ J )))) = [L(J ), E(L(J ,J (J ◦ J )))] ⊆ E(L(J ,J (J ◦ J ))).

Sowe obtain thatL(J ) contains a nonzero Engel Lie ideal E(L(J ,J (J ◦ J ))). By Lemma 3.8, we have

that L(J ) is reducible, which implies that J is reducible. In other words, any solvable Jordan algebra

has a nontrivial invariant subspace. Since the property of being a solvable Jordan algebra of compact

operators is inherited by quotients. That is, the Lie algebras induced on the gaps of amaximal subchain

of invariant subspaces of J are clearly solvable. By the Triangularization Lemma (see [5, Lemma 1] or

[1, Lemma 3.1]), Triangularizability is proved. �
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