434 research outputs found

    Analysis on the changes of convergence of regional economic growth in China: 1984-2010

    Get PDF
    I den här konsumtionsuppsatsen ligger fokus på hur livet i Sverige skildras för både en etnisk svensk och för en invandrare i läroböcker för SFI samt svenska som andraspråk. Forskningsområdet är tämligen outforskat och litteraturen som har använts i arbetet har hittats via litteratursökningar i olika databaser samt bibliotekets katalog. Som metod har jag använt mig av allmän litteraturstudie och har valt studier utifrån ämnesrelevans för uppsatsen.Först och främst skildras lärobokens roll i samhället och vikten av läromedelsanalyser samt de relevanta forskningsfrågorna. Därefter får man läsa om hur arbetet har skrivits och analyserats utifrån ett forskningsöversiktligt perspektiv. Detta följs av själva analysen där man kommer fram till att den analyserade litteraturen pekar på att det ofta skildras en stereotyp bild av Sverige och dess invånare i läroböcker inom SFI och svenska som andraspråk. Sist får man läsa en avslutande diskussion där ämnet problematiseras, metoderna jämförs, vilka didaktiska implikationer ämnet har samt förslag till vidare studier

    A Novel Variable Index and Excision CFAR Based Ship Detection Method on SAR Imagery

    Get PDF
    When applying the constant false alarm rate (CFAR) detector to ship detection on synthetic aperture radar (SAR) imagery, multiple interferers such as upwelling, breaking waves, ambiguities, and neighboring ships in a dense traffic area will degrade the probability of detection. In this paper, we propose a novel variable index and excision CFAR (VIE-CFAR) based ship detection method to alleviate the masking effect of multiple interferers. Firstly, we improve the variable index (VI) CFAR with an excision procedure, which censors the multiple interferers from the reference cells. And then, the paper integrates the novel CFAR concept into a ship detection scheme on SAR imagery, which adopts the VIE-CFAR to screen reference cells and the distribution to derive detection threshold. Finally, we analyze the performances of the VIE-CFAR under different environments and validate the proposed method on both ENVISAT and TerraSAR-X SAR data. The results demonstrate that the proposed method outperforms other existing detectors, especially in the presence of multiple interferers

    Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Get PDF
    As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation

    Fast Repetition Rate Fluorometry (FRRF) Derived Phytoplankton Primary Productivity in the Bay of Bengal

    Get PDF
    The approach of fast repetition rate fluorometry (FRRF) requires a conversion factor (Φe : C/nPSII) to derive ecologically-relevant carbon uptake rates (PPz,t). However, the required Φe : C/nPSII is commonly measured by 14C assimilation and varies greatly across phytoplankton taxonomy and environmental conditions. Consequently, the use of FRRF to estimate gross primary productivity (GPz,t), alone or in combination with other approaches, has been restricted by both inherent conversion and procedural inconsistencies. Within this study, based on a hypothesis that the non-photochemical quenching (NPQNSV) can be used as a proxy for the variability and magnitude of Φe : C/nPSII, we thus proposed an independent field model coupling with the NPQNSV-based Φe : C/nPSII for FRRF-derived carbon, without the need for additional Φe : C/nPSII in the Bay of Bengal (BOB). Therewith, this robust algorithm was verified by the parallel measures of electron transport rates and 14C-uptake PPz,t. NPQNSV is theoretically caused by the effects of excess irradiance pressure, however, it showed a light and depth-independent response on large spatial scales of the BOB. Trends observed for the maximum quantum efficiency (Fv/Fm), the quantum efficiency of energy conversion (Fq′/Fm′) and the efficiency of charge separation (Fq′/Fv′) were similar and representative, which displayed a relative maximum at the subsurface and were collectively limited by excess irradiance. In particular, most observed values of Fv/Fm in the BOB were only about half of the values expected for nutrient replete phytoplankton. FRRF-based estimates of electron transport at PSII (ETRRCII) varied significantly, from 0.01 to 8.01 mol e− mol RCII−1 s−1, and showed profound responses to depth and irradiance across the BOB, but fitting with the logistic model. N, P, and irradiance are key environmental drivers in explaining the broad-scale variability of photosynthetic parameters. Furthermore, taxonomic shifts and physiological changes may be better predictors of photosynthetic parameters, and facilitate the selection of better adapted species to optimize photosynthetic efficiency under any particular set of ambient light condition

    Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2_{2} transistor

    Full text link
    Atomically-thin 2D semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their full acceptance as compliant materials for integration in logic devices. Two key-components to master are the barriers at metal/semiconductor interfaces and the mobility of the semiconducting channel, which endow the building-blocks of pn{pn} diode and field effect transistor. Here, we have devised a reverted stacking technique to intercalate a wrinkle-free h-BN tunnel layer between MoS2_{2} channel and contacting electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed unprecedented features of ambipolar pn{pn} to np{np} diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Comment: 23 pages, 5 main figures + 9 SI figure

    The G285S mutation in nsP1 is sufficient to render Sindbis virus as a stable vector for gene delivery

    Get PDF
    Neuroscience, gene therapy, and vaccine have all benefited from the increased use of viral vectors. Sindbis virus (SINV) is a notable candidate among these vectors. However, viral vectors commonly suffer from a loss of expression of the transgene, especially RNA viral vectors. In this study, we used a directed evolution approach by continuous passage of selection to identify adaptive mutations that help SINV to stably express exogenous genes. As a result, we found two adaptive mutations that are located at aa 285 (G to S) of nsP1 and aa 422 (D to G) of nsP2, respectively. Further study showed that G285S was sufficient for SINV to stabilize the expression of the inserted gene, while D422G was not. Combined with AlphaFold2 and sequence alignment with the genus Alphavirus, we found that G285S is conserved. Based on this mutation, we constructed a new vector for the applications in neural circuits mapping. Our results indicated that the mutant SINV maintained its anterograde transsynaptic transmission property. In addition, when the transgene was replaced by another gene, granulocyte-macrophage colony-stimulating factor (GM-CSF), the vector still showed stable expression of the inserted gene. Hence, using SINV as an example, we have demonstrated an efficient approach to greatly augment the gene delivery capacity of viral vectors, which will be useful to neuroscience and oncolytic therapy
    corecore