69 research outputs found

    A Wohlfahrtiimonas chitiniclastica with a novel type of blaVEB–1-carrying plasmid isolated from a zebra in China

    Get PDF
    BackgroundWohlfahrtiimonas chitiniclastica is an emerging fly-borne zoonotic pathogen, which causes infections in immunocompromised patients and some animals. Herein, we reported a W. chitiniclastica BM-Y from a dead zebra in China.MethodsThe complete genome sequencing of BM-Y showed that this isolate carried one chromosome and one novel type of blaVEB–1-carrying plasmid. Detailed genetic dissection was applied to this plasmid to display the genetic environment of blaVEB–1.ResultsThree novel insertion sequence (IS) elements, namely ISWoch1, ISWoch2, and ISWoch3, were found in this plasmid. aadB, aacA1, and gcuG were located downstream of blaVEB–1, composing a gene cassette array blaVEB–1–aadB–aacA1–gcuG bracketed by an intact ISWoch1 and a truncated one, which was named the blaVEB–1 region. The 5′-RACE experiments revealed that the transcription start site of the blaVEB–1 region was located in the intact ISWoch1 and this IS provided a strong promoter for the blaVEB–1 region.ConclusionThe spread of the blaVEB–1-carrying plasmid might enhance the ability of W. chitiniclastica to survive under drug selection pressure and aggravate the difficulty in treating infections caused by blaVEB–1-carrying W. chitiniclastica. To the best of our knowledge, this is the first report of the genetic characterization of a novel blaVEB–1-carrying plasmid with new ISs from W. chitiniclastica

    A clinical Pseudomonas juntendi strain with blaIMP−1 carried by an integrative and conjugative element in China

    Get PDF
    ObjectiveTo precisely determine the species of a carbapenem-resistant Pseudomonas strain 1809276 isolated from the urine of a Chinese patient and analyze its integrative and conjugative element (ICE) 1276 formation mechanism.MethodsSingle-molecule real-time (SMRT) sequencing was carried out on strain 18091276 to obtain the complete chromosome and plasmid (pCN1276) sequences, and average nucleotide identity (ANI) was used for precise species identification. The ICEs in GenBank with the same integrase structure as ICE 1276 were aligned. At the same time, the transfer ability of blaIMP−1 and the antibiotic sensitivity of Pseudomonas juntendi 18091276 were tested.ResultsThis bacterium was P. juntendi, and its drug resistance mechanism is the capture of the accA4' gene cassette by the Tn402-like type 1 integron (IntI1-blaIMP−1) to form In1886 before its capture by the ΔTn4662a-carrying ICE 1276. The acquisition of blaIMP−1 confers carbapenem resistance to P. juntendi 18091276.ConclusionThe formation of blaIMP−1-carrying ICE 1276, its further integration into the chromosomes, and transposition and recombination of other elements promote bacterial gene accumulation and transmission

    Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming

    No full text
    Renewable energy sources (RES) generation has huge environmental and social benefits, as a clean energy source with great potential. However, the difference in the uncertainty characteristics of RES and electric–thermal loads poses a significant challenge to the optimal schedule of an integrated energy system (IES). Therefore, for the different characteristics of the multiple uncertainties of IES, this paper proposes a type-II fuzzy interval chance-constrained programming (T2FICCP)-based optimization model to solve the above problem. In this model, type-II fuzzy sets are used to describe the uncertainty of RES in an IES, and interval numbers are used to describe the load uncertainty, thus constructing a T2FICCP-based IES day-ahead economic scheduling model. The model was resolved with a hybrid algorithm based on interval linear programming and T2FICCP. The simulations are conducted for a total of 20 randomly selected days to obtain the advance operation plan of each unit and the operation cost of the system. The research results show that the T2FICCP optimization model has less dependence on RES output power and load forecasting error, so can effectively improve the economy of IES, while ensuring the safe and stable operation of the system

    Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming

    No full text
    Renewable energy sources (RES) generation has huge environmental and social benefits, as a clean energy source with great potential. However, the difference in the uncertainty characteristics of RES and electric–thermal loads poses a significant challenge to the optimal schedule of an integrated energy system (IES). Therefore, for the different characteristics of the multiple uncertainties of IES, this paper proposes a type-II fuzzy interval chance-constrained programming (T2FICCP)-based optimization model to solve the above problem. In this model, type-II fuzzy sets are used to describe the uncertainty of RES in an IES, and interval numbers are used to describe the load uncertainty, thus constructing a T2FICCP-based IES day-ahead economic scheduling model. The model was resolved with a hybrid algorithm based on interval linear programming and T2FICCP. The simulations are conducted for a total of 20 randomly selected days to obtain the advance operation plan of each unit and the operation cost of the system. The research results show that the T2FICCP optimization model has less dependence on RES output power and load forecasting error, so can effectively improve the economy of IES, while ensuring the safe and stable operation of the system
    • …
    corecore