308 research outputs found
"Overwriting", not "Competing", characterizes the visual working memory consolidation
Visual working memory (VWM) consolidation is the process to transfer a fleeting perpetual representation into a durable WM representation that can survive the presentation of new sensory inputs. It is investigated by post-exposure of a mask shortly after offset of memory array (S1). The memory performance increases as stimulus onset asynchrony (SOA) between S1 and mask array increases and finally reaches a asymptote level not influenced by the mask. It is considered that masks interfere the memory items representation into VWM in short SOA and that causes the consolidation phenomenon. Nevertheless, the question leaves open: how do masks interfere with this consolidation process. In this study, we tested whether masks overwrote the perceptual representation of memory items or competed with them for VWM representation. Masks interfered only when they appeared in the same location as memory items. We concluded that "overwriting", not "competing", characterized the VWM consolidation. Using the model "boost and bounce theory of temporal attention"[1], we gave the explanation to that conclusion. 
Implicit sequence learning of chunking and abstract structures
The current study investigated whether people can simultaneously acquire knowledge about concrete chunks and abstract structures in implicit sequence learning; and whether the degree of abstraction determines the conscious status of the acquired knowledge. We adopted three types of stimuli in a serial reaction time task in three experiments. The RT results indicated that people could simultaneously acquire knowledge about concrete chunks and abstract structures of the temporal sequence. Generation performance revealed that ability to control was mainly based on abstract structures rather than concrete chunks. Moreover, ability to control was not generally accompanied with awareness of knowing or knowledge, as measured by confidence ratings and attribution tests, confirming that people could control the use of unconscious knowledge of abstract structures. The results present a challenge to computational models and theories of implicit learning
Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process
Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ lpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may not be the significant contributor as the energies involved in the hyperfine effect are much smaller than those with molecular collisions, especially under convective conditions
Automating Intersection Marking Data Collection and Condition Assessment at Scale With An Artificial Intelligence-Powered System
Intersection markings play a vital role in providing road users with guidance and information. The conditions of intersection markings will be gradually degrading due to vehicular traffic, rain, and/or snowplowing. Degraded markings can confuse drivers, leading to increased risk of traffic crashes. Timely obtaining high-quality information of intersection markings lays a foundation for making informed decisions in safety management and maintenance prioritization. However, current labor-intensive and high-cost data collection practices make it very challenging to gather intersection data on a large scale. This paper develops an automated system to intelligently detect intersection markings and to assess their degradation conditions with existing roadway Geographic information systems (GIS) data and aerial images. The system harnesses emerging artificial intelligence (AI) techniques such as deep learning and multi-task learning to enhance its robustness, accuracy, and computational efficiency. AI models were developed to detect lane-use arrows (85% mean average precision) and crosswalks (89% mean average precision) and to assess the degradation conditions of markings (91% overall accuracy for lane-use arrows and 83% for crosswalks). Data acquisition and computer vision modules developed were integrated and a graphical user interface (GUI) was built for the system. The proposed system can fully automate the processes of marking data collection and condition assessment on a large scale with almost zero cost and short processing time. The developed system has great potential to propel urban science forward by providing fundamental urban infrastructure data for analysis and decision-making across various critical areas such as data-driven safety management and prioritization of infrastructure maintenance
Detecting phone-related pedestrian distracted behaviours via a two-branch convolutional neural network
The distracted phone-use behaviours among pedestrians, like Texting, Game Playing and Phone Calls, have caused increasing fatalities and injuries. However, the research of phonerelated distracted behaviour by pedestrians has not been systemically studied. It is desired to improve both the driving and pedestrian safety by automatically discovering the phonerelated pedestrian distracted behaviours. Herein, a new computer vision-based method is proposed to detect the phone-related pedestrian distracted behaviours from a view of intelligent and autonomous driving. Specifically, the first end-to-end deep learning based Two-Branch Convolutional Neural Network (CNN) is designed for this task. Taking one synchronised image pair by two front on-car GoPro cameras as the inputs, the proposed two-branch CNN will extract features for each camera, fuse the extracted features and perform a robust classification. This method can also be easily extended to video-based classification by confidence accumulation and voting. A new benchmark dataset of 448 synchronised video pairs of 53,760 images collected on a vehicle is proposed for this research. The experimental results show that using two synchronised cameras obtained better performance than using one single camera. Finally, the proposed method achieved an overall best classification accuracy of 84.3% on the new benchmark when compared to other methods
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only
Tree-ring-based precipitation reconstruction in the source region of Weihe River, northwest China since AD 1810
A tree-ring width chronology of Picea purpurea Mast from Mt. Shouyang in the source region of Weihe River (SWR), northwest China, was developed in this study. Correlation analysis showed that the precipitation from previous August to current July was the limiting climate factor of tree growth. Using a reliable and stable linear regression model, which explained 42.6% of the variance of the actual precipitation during the calibration period from 1958 to 2014, a 205-year long precipitation series was reconstructed for the SWR. The dry years in the reconstruction were well supported by historical documents, and famous historical droughts were also recorded in the dry periods of a low-frequency scale of the reconstructed precipitation. As demonstrated by the spatial correlation patterns, the reconstructed series compared well with other hydroclimate records for northwest China, indicating that it could represent large-scale hydroclimate changes. The 2-8-year interannual cycles and the interdecadal quasiperiods of 15.9 years and 18.6 years revealed that the precipitation in this region was probably affected by the El Nino-Southern Oscillation and North Atlantic Oscillation. The dry/wet years corresponded well with the El Nino/La Nina events and the SWR commonly experienced droughts during the low periods of North Atlantic Oscillation
Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions
Sunshine is as essential as temperature and precipitation for tree growth, but sunshine duration reconstructions based on tree rings have not yet been conducted in China. In this study, we presented a 497-year sunshine duration reconstruction for the southeastern Tibetan Plateau using a width chronology of Abies forrestii from the central Hengduan Mountains. The reconstruction accounted for 53.5% of the variance in the observed sunshine during the period of 1961-2013 based on a stable and reliable linear regression. This reconstructed sunshine duration contained six sunny periods (1630-1656, 1665-1697, 1731-1781, 1793-1836, 1862-1895 and 1910-1992) and seven cloudy periods (1522-1629, 1657-1664, 1698-1730, 1782-1792, 1837-1861, 1896-1909 and 1993-2008) at a low-frequency scale. There was an increasing trend from the 16th century to the late 18th and early 19th centuries and a decreasing trend from the mid-19th to the early 21st centuries. Sunshine displayed inverse patterns to the local Palmer drought severity index on a multidecadal scale, indicating that this region likely experienced droughts under more sunshine conditions. The decrease in sunshine particularly in recent decades was mainly due to increasing atmospheric anthropogenic aerosols. In terms of the interannual variations in sunshine, weak sunshine years matched well with years of major volcanic eruptions. The significant cycles of the 2- to 7-year, 20.0-year and 35.2-year durations as well as the 60.2-year and 78.7-year durations related to the El-Nino Southern Oscillation, the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation suggested that the variation in sunshine duration in the southeastern Tibetan Plateau was possibly affected by large-scale ocean-atmosphere circulations. (C) 2018 Elsevier B.V. All rights reserved
- …