801 research outputs found

    A three dimensional infinite wedge shaped solid block sliding into water along an inclined beach

    Get PDF
    The three dimensional (3D) problem of a solid block sliding into water along an inclined beach is investigated. The main part of the block is an infinite wedge cylinder and the front of the body is part of an elliptical cone. Incompressible velocity potential theory is used together with fully nonlinear boundary conditions. When gravity is ignored, it is found that self-similar solution is possible. The boundary element method is used to solve the problem. The free surface shape is updated together with the potential on the free surface until the flow has become self-similar. Convergence studies are taken with respect to marching step and element size. Simulations are made for different bodies and different beach angles. Extensive results are provided for the pressure as well as the free surface shape, and their implications in physics are discussed

    Local flow at plate edge during water entry

    Get PDF
    The local flow near the edge of a horizontal plate impacting a flat liquid surface is investigated through velocity potential flow theory. The inner solution is matched with the outer solution. The far field of the inner solution is assumed to be far away from the other edge of the plate, and thus, its effect can be neglected. The effects of surface tension, viscous friction, and gravity are accounted for in the fully nonlinear dynamic boundary condition on the free surface. When one of these effects is dominant and the other two can be ignored, it is then possible to use self-similar variables to describe the local flow if the entry speed varies with time in a corresponding manner. Detailed results for various self-similar solutions are provided, and the relative importance of the Weber number, Reynolds number, and Froude number is investigated. Simulations are also undertaken for general non-similar flow, and the comparison with the experimental data is also made

    Free fall water entry of a wedge tank into calm water in three degrees of freedom

    Get PDF
    The hydrodynamic problem of a two dimensional wedge tank filled with liquid entering a calm water surface is analysed based on the incompressible velocity potential theory. The motion effect of inner liquid on the entry process is investigated through comparison with the result containing equivalent solid mass or the liquid being frozen. The problem is solved through the boundary element method in the time domain. Two separated computational regions are constructed. One is the inner domain for the internal liquid, and the other is the outer open domain for the open water. The former is solved in the physical coordinate system, and the latter is solved in a stretched coordinate system. The solutions of two separated domains are connected through the motion of the body. The auxiliary function method is extended to decouple the nonlinear mutual dependence between fluid loads from two separated domains and the body motion. Detailed results for wedge motion, external impact pressure and free surface, and for internal pressure, free surface deformation and liquid motion are provided. Through comparison with the results of a wedge tank with frozen ice, in-depth discussion on the effect of the inner liquid is provided

    A comparison of acidic and enzymatic hydrolysis of rutin

    Get PDF
    Rutin and its hydrolysis products (isoquercitrin and quercetin) are widely used as important materials in food and pharmaceutical industry. In this study, the effects of various acids and enzymes as catalysts on the hydrolysis reaction of rutin were studied. In comparison with acidic and enzymatic catalysis of rutin, the research results indicated that there was a sharp difference in the selectivity of hydrolysis product between the methods. When 2.5% H3PO4, 1% HCl and 0.5% H2SO4 were used as catalysts, transformation yields of isoquercitin hydrolyzed from rutin were 9.60, 0.69 and 1.25%, but those of quercetin were 11.13, 100 and 2.57%, respectively. When hesperidinase, snailase and cellulase-T2440 were used as catalysts, transformation yields of isoquercitin hydrolyzed from rutin were 43.21, 3.07 and 0.00%, but those of quercetin were 58.10, 96.39 and 30.89%, respectively. In conclusion, the aglycon of rutin was deglycosolated easily under mild acidic hydrolysis conditions at appropriate temperatures, but its secondary glucoside was difficult to be obtained. Contrarily, the prepared isoquercitrin by enzymatic hydrolysis of rutin was preferable to the acidic hydrolysis, especially for hesperidinase.Key words: Rutin, isoquercitrin, quercetin, hydrolysis, acid, enzym

    Legacy Effect of Long-Term Elevated CO2 and Warming on Soil Properties Controls Soil Organic Matter Decomposition

    Get PDF
    Plant litter quality is one of the key factors that control soil organic matter (SOM) decomposition. Under climate change, although significant change in litter quality has been intensively reported, the effect of litter quality change on SOM decomposition is poorly understood. This limits our ability to model the dynamics of soil carbon under climate change. To determine the effect of litter quality and soil property change on SOM decomposition, we performed a controlled, reciprocal transplant and litter decomposition experiments. The soils and plant litters were collected from a long-term field experiment, where four treatments were designed, including: (1) the control without warming at ambient CO2; (2) elevated atmospheric CO2 up to 500 ppm (C); (3) warming plant canopy by 2 degrees C (T); (4) elevated CO2 plus warming (CT). We found that elevated CO2 and warming altered the litter quality significantly in terms of macronutrients' content and their stoichiometry. Elevated CO2 decreased the concentration of N in rice and wheat straw, while warming decreased the concentration of N and K in wheat straw. However, the change in plant litter quality did not lead to a shift in SOM decomposition. On the contrary, the legacy effect of long-term elevated CO2 and warming on soil properties dominated the decomposition rate of SOM. Elevated atmospheric CO2 suppressed SOM decomposition mainly by increasing phosphorous availability and lowering the soil C/N, fungi/bacteria ratio, and N-acetyl-glucosaminidase activity, while warming or elevated CO2 plus warming had no effect on SOM decomposition. Our results demonstrated that the changes in soil property other than litter quality control the decomposition of SOM under climate change, and soil property change in respond to climate change should be considered in model developing to predict terrestrial soil carbon dynamics under elevated atmospheric CO2 and warming

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Risk perception of arsenic exposure from rice intake in a UK population

    Get PDF
    In the UK, consumption of rice and rice-based products is on the rise but, notwithstanding public expressed concerns about such products as an exposure route for arsenic (e.g. BBC News report, 2017“Should I worry about arsenic in my rice?”) there are few, if any published data on public perceptions of risks associated with exposure to arsenic in rice. We therefore aimed to determine the risk perception of arsenic exposure from rice intake and factors that are associated with arsenic knowledge and whether or not this knowledge had an influence on rice consumption and cooking practices. A questionnaire, targeting participation of rice-eating ethnic minorities in Greater Manchester, UK, was administered to 184 participants. A multivariate generalized linear model was used to determine the factors associated with rice consumption behaviour, cooking practices, and risk perception. We show for the first time that the general population did not associate arsenic, which they perceive as toxic to health, with rice consumption. More than half of the participants knew about arsenic as a hazardous substance but less than ten percent knew that rice consumption could be an important route of arsenic exposure. Knowledge of arsenic was significantly lower in Asian/Asian British:Pakistanis (Pakistani) (OR: 0.006; 95% CI:0.00-0.03) and Asian/Asian British:Bangladeshis (Bangladeshi) (OR: 0.064; 95% CI:0.01-0.25) compared to White:English/Welsh/Scottish/Northern Irish/British (White British). Moreover, Bangladeshis consumed three times more rice (OR: 2.92; 95% CI:1.73-4.93) compared to White British. Overall higher rice consumption was not associated with higher knowledge of the nutritional value of rice. Rinsing rice before cooking, an effective arsenic removal technique, was practised by 93% of the participants, however the most popular cooking method was the use of adequate water (rice to water ratio of 1:2) but not excess water (rice to water ratio of > 1:4), the latter being more effective in removing arsenic. Better education, higher weekly expenditure on food and prior knowledge of arsenic hazard were all significant factors positively influencing a change in behaviour to reduce arsenic exposure from rice intake
    corecore