264 research outputs found

    External Field Effect on Electronic and Vibrational Properties of Carotenoids

    Get PDF
    Resonance Raman spectroscopy is one of the most popular molecular spectroscopy methods. Using this technique, carbon-carbon (CC) vibration can be well investigated and give much information on π-conjugated system. The CC vibration has a strong dependence on the π-electron band gap, which is able to be characterized by absorption spectroscopy. Electron-phonon coupling will strongly influence the Raman intensity and shows sensitivity to the surrounding environment. Through electron-phonon coupling, CC vibration can be modulated by the π-electron band gap. In this review, we present our absorption and Raman-scattering observations of all-trans-beta-carotene from different environment such as temperature, pressure, solvents, and phase transition. The relationship between π-electron band gap and CC vibration is studied. With the decreasing of the π-electron energy, the modulation on CC vibration and electron-phonon coupling is enhanced leading to spectral red-shift. This review has significant importance in understanding the resonance Raman scattering, structural properties of polyenes, and the physics behind it. The results are also valuable for the development of fine-quality photoelectric device

    Analysis on Strong Tracking Filtering for Linear Dynamic Systems

    Get PDF
    Strong tracking filtering (STF) is a popular adaptive estimation method to effectively deal with state estimation for linear and nonlinear dynamic systems with inaccurate models or sudden change of state. The key of the STF is to use a time-variant fading factor, which can be evaluated based on the current measurement innovation in real time, to forcefully correct one step state prediction error covariance. The strong tracking filtering technology has been extensively applied in many practical systems, but the theoretical analysis is highly lacking. In an effort to better understand STF, a novel analysis framework is developed for the strong tracking filtering and some new problems are discussed for the first time. For this, we propose a new perspective that correcting the state prediction error covariance by using the fading factor can be thought of directly modifying the state model by correcting the covariance of the process noise. Based on this proposed point of view, the conditions for the STF function to be effective are deeply analyzed in a certain linear dynamic system. Meanwhile, issues of false alarm and alarm failure are also briefly discussed for the strong tracking filtering function. Some numerical simulation examples are demonstrated to validate the results

    Local convexity inspired low-complexity non-coherent signal detector for nano-scale molecular communications

    Get PDF
    Molecular communications via diffusion (MCvD) represents a relatively new area of wireless data transfer with especially attractive characteristics for nanoscale applications. Due to the nature of diffusive propagation, one of the key challenges is to mitigate inter-symbol interference (ISI) that results from the long tail of channel response. Traditional coherent detectors rely on accurate channel estimations and incur a high computational complexity. Both of these constraints make coherent detection unrealistic for MCvD systems. In this paper, we propose a low-complexity and noncoherent signal detector, which exploits essentially the local convexity of the diffusive channel response. A threshold estimation mechanism is proposed to detect signals blindly, which can also adapt to channel variations. Compared to other noncoherent detectors, the proposed algorithm is capable of operating at high data rates and suppressing ISI from a large number of previous symbols. Numerical results demonstrate that not only is the ISI effectively suppressed, but the complexity is also reduced by only requiring summation operations. As a result, the proposed noncoherent scheme will provide the necessary potential to low-complexity molecular communications, especially for nanoscale applications with a limited computation and energy budget

    Low-complexity non-coherent signal detection for nano-scale molecular communications

    Get PDF
    Nano-scale molecular communication is a viable way of exchanging information between nano-machines. In this letter, a low-complexity and non-coherent signal detection technique is proposed to mitigate the intersymbol-interference (ISI) and additive noise. In contrast to existing coherent detection methods of high complexity, the proposed non-coherent signal detector is more practical when the channel conditions are hard to acquire accurately or hidden from the receiver. The proposed scheme employs the concentration difference to detect the ISI corrupted signals and we demonstrate that it can suppress the ISI effectively. The concentration difference is a stable characteristic, irrespective of the diffusion channel conditions. In terms of complexity, by excluding matrix operations or likelihood calculations, the new detection scheme is particularly suitable for nano-scale molecular communication systems with a small energy budget or limited computation resource

    A simple and visually orientated approach for type synthesis of overconstrained 1T2R parallel mechanisms

    Get PDF
    This paper presents a simple and highly visual approach for the type synthesis of a family of overconstrained parallel mechanisms that have one translational and two rotational movement capabilities. It considers, especially, mechanisms offering the accuracy and dynamic response needed for machining applications. This family features a spatial limb plus a member of a class of planar symmetrical linkages, the latter connected by a revolute joint either to the machine frame at its base link or to the platform at its output link. Criteria for selecting suitable structures from among numerous candidates are proposed by considering the realistic practical requirements for reconfigurability, movement capability, rational component design and so on. It concludes that a few can simultaneously fulfil the proposed criteria, even though a variety of structures have been presented in the literature. Exploitation of the proposed structures and evaluation criteria then leads to a novel five degrees of freedom hybrid module named TriMule. A significant potential advantage of the TriMule over the Tricept arises because all the joints connecting the base link and the machine frame can be integrated into one single, compact part, leading to a lightweight, cost effective and flexible design particularly suitable for configuring various robotized manufacturing cells

    Spectrum Sensing for Cognitive Radios with Unknown Noise Variance and Time-variant Fading Channels

    Get PDF

    Study on the Effect of Nano-SiO 2

    Get PDF
    Both process and mechanical of silicon substrate chemical mechanical polishing (CMP) are studied in detail, and the effects of experiments designed indicate that nano-SiO2 grinding particles seem to be acted as catalyzer besides the grinding action during the CMP process. This is different from the traditional function. As a result, in the condition of low pH, the nano-SiO2 slurry can be recycled. In the meanwhile, the removal rate can gain stability and pH value does not change obviously

    One-pot synthesis of 2-alkyl cycloketones on bifunctional Pd/ZrO<sub>2</sub> catalyst

    Get PDF
    2-Alkyl cycloketones are essential chemicals and intermediates for synthetic perfumes and pesticides, which are conventionally produced by multistep process including aldol condensation, separation and hydrogenation. In present work, a batch one-pot cascade approach using aldehydes and cycloketones as the raw materials, and a bifunctional Pd/ZrO2 catalyst was developed for the synthesis of 2-alkyl cycloketones, e.g., cyclohexanone and cycloheptanone. Very high aldehydes (except for paraldehyde with large steric hindrance) conversion and high yields for 2-alkyl cycloketones (e.g., 99 % of conversion for n-butanal and 76 wt.% of yield for 2-butyl cyclohexanone) were obtained at mild temperature of 140 °C. After 10 cycles of reuse, Pd/ZrO2 catalyst showed slight deactivation (ca. 5 % conversion and 10 % yield losses), due to the coke on the catalyst. However, the performance of the catalyst was completely recovered after an oxidative regeneration
    • …
    corecore